Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation

Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 2657 - 2665
Hlavní autoři: Park, Wonhui, Jin, Dongkwon, Kim, Chang-Su
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2022
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, we represent an object boundary by a linear combination of the M eigencontours. We also incorporate the eigencontours into an instance segmentation framework. Experimental results demonstrate that the proposed eigencontours can represent object boundaries more effectively and more efficiently than existing descriptors in a low-dimensional space. Furthermore, the proposed algorithm yields meaningful performances on instance segmentation datasets.
ISSN:1063-6919
DOI:10.1109/CVPR52688.2022.00269