Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation
Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, w...
Gespeichert in:
| Veröffentlicht in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 2657 - 2665 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.01.2022
|
| Schlagworte: | |
| ISSN: | 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, we represent an object boundary by a linear combination of the M eigencontours. We also incorporate the eigencontours into an instance segmentation framework. Experimental results demonstrate that the proposed eigencontours can represent object boundaries more effectively and more efficiently than existing descriptors in a low-dimensional space. Furthermore, the proposed algorithm yields meaningful performances on instance segmentation datasets. |
|---|---|
| AbstractList | Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, we represent an object boundary by a linear combination of the M eigencontours. We also incorporate the eigencontours into an instance segmentation framework. Experimental results demonstrate that the proposed eigencontours can represent object boundaries more effectively and more efficiently than existing descriptors in a low-dimensional space. Furthermore, the proposed algorithm yields meaningful performances on instance segmentation datasets. |
| Author | Kim, Chang-Su Park, Wonhui Jin, Dongkwon |
| Author_xml | – sequence: 1 givenname: Wonhui surname: Park fullname: Park, Wonhui email: whpark@mcl.korea.ac.kr organization: Korea University – sequence: 2 givenname: Dongkwon surname: Jin fullname: Jin, Dongkwon email: dongkwonjin@mcl.korea.ac.kr organization: Korea University – sequence: 3 givenname: Chang-Su surname: Kim fullname: Kim, Chang-Su email: changsukim@korea.ac.kr organization: Korea University |
| BookMark | eNotjl1LwzAYhaMouM39Ar3IH2h9kzRp4t2s0wlFZai3I13fSHUmJalf_97CvDo8cHjOmZIjHzwScs4gZwzMRfXyuJZcaZ1z4DwH4MockClTShbKFEockgkDJTJlmDkh85TeAEBwxpTRE7Jadq_ot8EP4TOmS3ofvnBHqz3Ta0zb2PVDiIle2YQtDZ7W4TtbW_9OF30fw0_3YYcu-FNy7Owu4fw_Z-T5ZvlUrbL64fauWtRZNx4bMtsqKA1YDZYp7oQzBQhVGt0U3GFTaORCuxGdBpCNNG0rUFoJWvCx0ogZOdt7O0Tc9HGcj78bo0s9asQfPctOiA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.00269 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 2665 |
| ExternalDocumentID | 9878367 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2021R1A4A1031864,2022R1A2B5B03002310 funderid: 10.13039/501100003725 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i269t-ad60790a80a162f3f94036798b42feb48e238f98bf8005b59dd3e5a50832b42b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867754202090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i269t-ad60790a80a162f3f94036798b42feb48e238f98bf8005b59dd3e5a50832b42b3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9878367 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.322365 |
| Snippet | Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2657 |
| SubjectTerms | Approximation algorithms categorization Computer vision grouping and shape analysis; Low-level vision; Recognition: detection Matrix decomposition Pattern recognition retrieval Segmentation Training |
| Title | Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation |
| URI | https://ieeexplore.ieee.org/document/9878367 |
| WOSCitedRecordID | wos000867754202090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxlgdGTBMn8YMNqlYdUFVVgLpV8SNSBUqqpC38fGwnahcWNtuyFOXs5POd7_sO4J5xTTJOFY5DJnHMaYjtLiHYVbZlSkkqpPLFJth0yhcLMWvBw54LY4zxyWfm0TX9Xb4u1NaFygbWP-YRZW1oM0ZrrtY-nhJZT4YK3rDjwkAMhh-zuRMzcQlcxMlyEp_VfKih4iFk3P3fw0-gf-DiodkeZU6hZfIz6DaHR9R8mlUPJiOvq-nkCLZl9YSmxc58oWHdR9a99L-HoqzQiwUujYocvRbfeJ7mn-jZCYv_rGoWYx_ex6O34QQ3ZRLwyr7RBqeaBkwEKQ_SkJIsykRsYYkJLmOSGRlzY2E5s93MHg4TmQitI5OkTgee2CkyOodOXuTmAlCsVSKUYnZlScysJ0bSIOKahyrigRL8EnrOMMt1rYSxbGxy9ffwNRw7y9cBixvobMqtuYUjtdusqvLOL98v1KmbDg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhh_24NHK1v3o603JRCMuBCChhvZ2i4hms1sgP75tt0CFy_e1mXJsr5tX9_r-74P4JYySVIWCuy7NME-C12s3xKCjbMtFSIJeSKs2QSNIjab8XED7jZcGKWUbT5T9-bQ7uXLXKxMqayr82PmhXQHdo1zVs3W2lRUPJ3LhJzV_DjX4d3e-3hi5ExMCxcxwpzE9jVvXVQsiAxa_7v9IXS2bDw03uDMETRUdgytevmI6o-zbMOwb5U1jSDBqigfUJSv1SfqVWOkE0z7g8iLEj1p6JIoz9Ao_8aTOPtAj0Za_GdR8Rg78DboT3tDXBsl4IV-oiWOZehQ7sTMid2QpF7KfQ1MlLPEJ6lKfKY0MKd6mOrlYZAEXEpPBbFRgif6ksQ7gWaWZ-oUkC9FwIWgOrbEpzoXI7HjMclc4TFHcHYGbTMx869KC2Nez8n536dvYH84fR3NR8_RywUcmChU5YtLaC6LlbqCPbFeLsri2obyFxmMnlc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Eigencontours%3A+Novel+Contour+Descriptors+Based+on+Low-Rank+Approximation&rft.au=Park%2C+Wonhui&rft.au=Jin%2C+Dongkwon&rft.au=Kim%2C+Chang-Su&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2657&rft.epage=2665&rft_id=info:doi/10.1109%2FCVPR52688.2022.00269&rft.externalDocID=9878367 |