Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation
Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, w...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 2657 - 2665 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.2022
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, we represent an object boundary by a linear combination of the M eigencontours. We also incorporate the eigencontours into an instance segmentation framework. Experimental results demonstrate that the proposed eigencontours can represent object boundaries more effectively and more efficiently than existing descriptors in a low-dimensional space. Furthermore, the proposed algorithm yields meaningful performances on instance segmentation datasets. |
|---|---|
| AbstractList | Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing all object boundaries in a training set. Second, we decompose the contour matrix into eigencontours via the best rank-M approximation. Third, we represent an object boundary by a linear combination of the M eigencontours. We also incorporate the eigencontours into an instance segmentation framework. Experimental results demonstrate that the proposed eigencontours can represent object boundaries more effectively and more efficiently than existing descriptors in a low-dimensional space. Furthermore, the proposed algorithm yields meaningful performances on instance segmentation datasets. |
| Author | Kim, Chang-Su Park, Wonhui Jin, Dongkwon |
| Author_xml | – sequence: 1 givenname: Wonhui surname: Park fullname: Park, Wonhui email: whpark@mcl.korea.ac.kr organization: Korea University – sequence: 2 givenname: Dongkwon surname: Jin fullname: Jin, Dongkwon email: dongkwonjin@mcl.korea.ac.kr organization: Korea University – sequence: 3 givenname: Chang-Su surname: Kim fullname: Kim, Chang-Su email: changsukim@korea.ac.kr organization: Korea University |
| BookMark | eNotjl1LwzAYhaMouM39Ar3IH2h9kzRp4t2s0wlFZai3I13fSHUmJalf_97CvDo8cHjOmZIjHzwScs4gZwzMRfXyuJZcaZ1z4DwH4MockClTShbKFEockgkDJTJlmDkh85TeAEBwxpTRE7Jadq_ot8EP4TOmS3ofvnBHqz3Ta0zb2PVDiIle2YQtDZ7W4TtbW_9OF30fw0_3YYcu-FNy7Owu4fw_Z-T5ZvlUrbL64fauWtRZNx4bMtsqKA1YDZYp7oQzBQhVGt0U3GFTaORCuxGdBpCNNG0rUFoJWvCx0ogZOdt7O0Tc9HGcj78bo0s9asQfPctOiA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.00269 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 2665 |
| ExternalDocumentID | 9878367 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2021R1A4A1031864,2022R1A2B5B03002310 funderid: 10.13039/501100003725 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i269t-ad60790a80a162f3f94036798b42feb48e238f98bf8005b59dd3e5a50832b42b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867754202090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i269t-ad60790a80a162f3f94036798b42feb48e238f98bf8005b59dd3e5a50832b42b3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9878367 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.322365 |
| Snippet | Novel contour descriptors, called eigencontours, based on low-rank approximation are proposed in this paper. First, we construct a contour matrix containing... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2657 |
| SubjectTerms | Approximation algorithms categorization Computer vision grouping and shape analysis; Low-level vision; Recognition: detection Matrix decomposition Pattern recognition retrieval Segmentation Training |
| Title | Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation |
| URI | https://ieeexplore.ieee.org/document/9878367 |
| WOSCitedRecordID | wos000867754202090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VioGpQIv4lgdGTJ3ESWw2qFp1QFVVAepWxfVZqkAJStrCz8d2onZhYbMtK1HOcp7vfO8dwB0uI7usWUS1YUhdLQcqEyWpkIoZwwIdo_HFJtLJRMznctqC-x0XBhF98hk-uKa_y9fFcuNCZX3rH4soSQ_gIE2Tmqu1i6dE1pNJpGjYcQGT_cH7dObETFwCV-hkOUOf1byvoeIhZNT538uPobfn4pHpDmVOoIX5KXSawyNptmbVhfHQ62o6OYJNWT2SSbHFTzKo-8S6l_73UJQVebbApUmRk5fim86y_IM8OWHxn1XNYuzB22j4OhjTpkwCXdkvWtNMJyyVLBMsC5LQREZyC0upFIqHBhUXaGHZ2K6xh8NYxVLrCOPM6cCHdoqKzqCdFzmeAwmkViKLNZcWurmy3rET3BMxCm6fo_kFdJ1hFl-1Esaiscnl38NXcOQsXwcsrqG9Ljd4A4fL7XpVlbd--X4BHSmbMQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhh_24NHK2M_W29KIBhxIQQNN7LS14RoNrMB-ufbdgtcvHhbl2XL-rJ9fa_v-z6AW5x7OqyJR6VykBovB8pDwSnjwlHK6cgAlTWbiOKYTad8VIO7DRcGEW3zGd6bQ7uXL7P5ypTK2jo_Zl4Y7cCucc6q2Fqbioqnc5mQs4of13F4u_s-Ghs5E9PC5RphTtf2NW9dVCyI9Bv_e_whtLZsPDLa4MwR1DA9hka1fCTVx1k0YdCzyppGkGCVFw8kztb4SbrlmOgE0_4gsrwgTxq6JMlSMsy-6ThJP8ijkRb_WZQ8xha89XuT7oBWRgl0od9oSRMZOhF3EuYkndBVnuK-BqaIM-G7CoXPUAOz0kOll4eBCLiUHgaJUYJ39SXCO4F6mqV4CqTDpWBJIH2uwdsXOj82knssQObr-0j_DJpmYmZfpRbGrJqT879P38D-YPI6nA2f45cLODBRKMsXl1Bf5iu8gr35erko8msbyl9lE556 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Eigencontours%3A+Novel+Contour+Descriptors+Based+on+Low-Rank+Approximation&rft.au=Park%2C+Wonhui&rft.au=Jin%2C+Dongkwon&rft.au=Kim%2C+Chang-Su&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2657&rft.epage=2665&rft_id=info:doi/10.1109%2FCVPR52688.2022.00269&rft.externalDocID=9878367 |