Deep Convolutional Variational Autoencoder for Anomalous Sound Detection

Anomalous sound detection (ASD) is one of the most important fields in industrial facility maintenance. For this task, semi-supervised approaches are preferred thanks to their simplicity and no training data labels required. These methods train an autoencoder (AE) with only normal sound data and det...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2020 IEEE Eighth International Conference on Communications and Electronics (ICCE) s. 313 - 318
Hlavní autori: Nguyen, Minh-Hieu, Nguyen, Duy-Quang, Nguyen, Dinh-Quoc, Pham, Cong-Nguyen, Bui, Dai, Han, Huy-Dung
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 13.01.2021
Predmet:
ISBN:9781728154695, 1728154693
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Anomalous sound detection (ASD) is one of the most important fields in industrial facility maintenance. For this task, semi-supervised approaches are preferred thanks to their simplicity and no training data labels required. These methods train an autoencoder (AE) with only normal sound data and detect anomalies based on anomaly scores of actual samples. In this paper, we propose applying the convolutional variational autoencoder (CVAE) to ASD task. Through experiments using machine sound data, the CVAE is proven to be effective in detecting abnormal sound and outperform existing methods.
ISBN:9781728154695
1728154693
DOI:10.1109/ICCE48956.2021.9352085