Deep Convolutional Variational Autoencoder for Anomalous Sound Detection

Anomalous sound detection (ASD) is one of the most important fields in industrial facility maintenance. For this task, semi-supervised approaches are preferred thanks to their simplicity and no training data labels required. These methods train an autoencoder (AE) with only normal sound data and det...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 IEEE Eighth International Conference on Communications and Electronics (ICCE) s. 313 - 318
Hlavní autoři: Nguyen, Minh-Hieu, Nguyen, Duy-Quang, Nguyen, Dinh-Quoc, Pham, Cong-Nguyen, Bui, Dai, Han, Huy-Dung
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 13.01.2021
Témata:
ISBN:9781728154695, 1728154693
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Anomalous sound detection (ASD) is one of the most important fields in industrial facility maintenance. For this task, semi-supervised approaches are preferred thanks to their simplicity and no training data labels required. These methods train an autoencoder (AE) with only normal sound data and detect anomalies based on anomaly scores of actual samples. In this paper, we propose applying the convolutional variational autoencoder (CVAE) to ASD task. Through experiments using machine sound data, the CVAE is proven to be effective in detecting abnormal sound and outperform existing methods.
ISBN:9781728154695
1728154693
DOI:10.1109/ICCE48956.2021.9352085