DeX: Scaling Applications Beyond Machine Boundaries

Increasing the computing performance within a single-machine form factor is becoming increasingly difficult due to the complexities in scaling processor interconnects and coherence protocols. On the other hand, converting existing applications to run on multiple nodes requires a significant effort t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the International Conference on Distributed Computing Systems S. 864 - 876
Hauptverfasser: Kim, Sang-Hoon, Chuang, Ho-Ren, Lyerly, Robert, Olivier, Pierre, Min, Changwoo, Ravindran, Binoy
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2020
Schlagworte:
ISSN:2575-8411
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing the computing performance within a single-machine form factor is becoming increasingly difficult due to the complexities in scaling processor interconnects and coherence protocols. On the other hand, converting existing applications to run on multiple nodes requires a significant effort to rewrite application logic in distributed programming models and adapt the code to the underlying network characteristics.This paper presents DeX, an operating system-level approach to extend the execution boundary of existing applications over multiple machines. DeX allows the threads in a process to be relocated and distributed dynamically through a simple function call. DeX makes it trivial for developers to convert any application to be distributed over multiple nodes and for applications to transparently utilize disaggregated resources in a rack-scale system with minimal effort. Evaluation results using a running prototype and eight real applications showed promising results - six out of the eight scaled beyond the single-machine performance on DeX.
ISSN:2575-8411
DOI:10.1109/ICDCS47774.2020.00021