Heart Failure diagnosis based on deep learning techniques

The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are implemented, where stacked Restricted Boltzman Machines (RBMs) and stacked Autoencoders (AEs) are used to pre-train Deep Belief Networks (DBN) a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Ročník 2021; s. 1757 - 1760
Hlavní autori: Papadopoulos, Theofilos G., Plati, Daphni, Tripoliti, Evanthia E., Goletsis, Yorgos, Naka, Katerina K., Rammos, Aidonis, Bechlioulis, Aris, Watson, Chris, McDonald, Kenneth, Ledwidge, Mark, Pharithi, Rebabonye, Gallagher, Joseph, Fotiadis, Dimitrios I.
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.11.2021
Predmet:
ISSN:2694-0604, 2694-0604
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are implemented, where stacked Restricted Boltzman Machines (RBMs) and stacked Autoencoders (AEs) are used to pre-train Deep Belief Networks (DBN) and Deep Neural Networks (DNN). The data is provided by the University College Dublin and the 2nd Department of Cardiology from the University Hospital of Ioannina. The features recorded are grouped into: general demographic information, physical examination, classical cardiovascular risk factors, personal history of cardiovascular disease, symptoms, medications, echocardiographic features, laboratory findings, lifestyle/habits and other diseases. The total number of subjects utilized is 422. The deep learning methods provide quite high results with the Autoencoder plus DNN approach to demonstrate accuracy 91.71%, sensitivity 90.74%, specificity 92.31% and f-score 89.36%.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2694-0604
2694-0604
DOI:10.1109/EMBC46164.2021.9630409