Removing Noise from Extracellular Neural Recordings Using Fully Convolutional Denoising Autoencoders

Extracellular recordings are severely contaminated by a considerable amount of noise sources, rendering the denoising process an extremely challenging task that should be tackled for efficient spike sorting. To this end, we propose an end-to-end deep learning approach to the problem, utilizing a Ful...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Ročník 2021; s. 890 - 893
Hlavní autoři: Kechris, Christodoulos, Delitzas, Alexandros, Matsoukas, Vasileios, Petrantonakis, Panagiotis C.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.11.2021
Témata:
ISSN:2694-0604, 2694-0604
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Extracellular recordings are severely contaminated by a considerable amount of noise sources, rendering the denoising process an extremely challenging task that should be tackled for efficient spike sorting. To this end, we propose an end-to-end deep learning approach to the problem, utilizing a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input. The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals, outperforming widely-used wavelet denoising techniques.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2694-0604
2694-0604
DOI:10.1109/EMBC46164.2021.9630585