Latent Space Slicing for Enhanced Entropy Modeling In Learning-Based Point Cloud Geometry Compression

The growing adoption of point clouds as an imaging modality has stimulated the search for efficient solutions for compression. Learning-based algorithms have been reporting increasingly better performance and are drawing the attention from the research community and standardisation groups such as JP...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 4878 - 4882
Hlavní autoři: Frank, Nicolas, Lazzarotto, Davi, Ebrahimi, Touradj
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 23.05.2022
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The growing adoption of point clouds as an imaging modality has stimulated the search for efficient solutions for compression. Learning-based algorithms have been reporting increasingly better performance and are drawing the attention from the research community and standardisation groups such as JPEG and MPEG. Learned autoencoder architectures based on 3D convolutional layers are popular solutions and have demonstrated higher performance when adopting latent space entropy modeling based on learned hyperpriors. We propose an enhanced entropy model that takes into account both the hyperprior and previously encoded latent features to estimate the mean and scale of compressed features. The obtained results show a large increase in performance, with a BD PSNR gain of 5.75dB when compared to the Octree coding module in G-PCC for the D2 PSNR metric. We also perform an ablation study to quantify the impact of network parameters in the performance of the model, drawing useful insights for future research.
AbstractList The growing adoption of point clouds as an imaging modality has stimulated the search for efficient solutions for compression. Learning-based algorithms have been reporting increasingly better performance and are drawing the attention from the research community and standardisation groups such as JPEG and MPEG. Learned autoencoder architectures based on 3D convolutional layers are popular solutions and have demonstrated higher performance when adopting latent space entropy modeling based on learned hyperpriors. We propose an enhanced entropy model that takes into account both the hyperprior and previously encoded latent features to estimate the mean and scale of compressed features. The obtained results show a large increase in performance, with a BD PSNR gain of 5.75dB when compared to the Octree coding module in G-PCC for the D2 PSNR metric. We also perform an ablation study to quantify the impact of network parameters in the performance of the model, drawing useful insights for future research.
Author Lazzarotto, Davi
Frank, Nicolas
Ebrahimi, Touradj
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Frank
  fullname: Frank, Nicolas
  organization: École Polytechnique Fédérale de Lausanne (EPFL),Multimedia Signal Processing Group (MMSPG)
– sequence: 2
  givenname: Davi
  surname: Lazzarotto
  fullname: Lazzarotto, Davi
  organization: École Polytechnique Fédérale de Lausanne (EPFL),Multimedia Signal Processing Group (MMSPG)
– sequence: 3
  givenname: Touradj
  surname: Ebrahimi
  fullname: Ebrahimi, Touradj
  organization: École Polytechnique Fédérale de Lausanne (EPFL),Multimedia Signal Processing Group (MMSPG)
BookMark eNotkFFLwzAUhaMouE1_gS_5A53JTZs0j1rmHFQcVMG3kSW3GumSktaH_ftVHFzuPXAPH5wzJ1chBiSEcrbknOmHTfXYNNtcaIAlsGlplatcywsy51IWOZtGXpIZCKUzrtnnDZkPww9jrFR5OSNYmxHDSJveWKRN560PX7SNia7CtwkW3STGFPsjfY0Ou7_vJtAaTQqTzp7MMFm20U-Mqou_jq4xHnBMR1rFQ59wGHwMt-S6Nd2Ad-e7IB_Pq_fqJavf1lOCOvNQiDGzuXJW700LlqHUFrDlDEG5Ym_QKaks6IJpEI7p1gIzpZISBCgo0RTciAW5_-d6RNz1yR9MOu7OlYgThnlZrg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747496
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 4882
ExternalDocumentID 9747496
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i253t-c47dc9baf2c0e69c2ef10e27d5baed767c2950923d09fc20a8766232728ea51a3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187905034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i253t-c47dc9baf2c0e69c2ef10e27d5baed767c2950923d09fc20a8766232728ea51a3
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/189145
PageCount 5
ParticipantIDs ieee_primary_9747496
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2780602
Snippet The growing adoption of point clouds as an imaging modality has stimulated the search for efficient solutions for compression. Learning-based algorithms have...
SourceID ieee
SourceType Publisher
StartPage 4878
SubjectTerms compression
deep learning
entropy modeling
Octrees
Point cloud
Point cloud compression
Redundancy
Three-dimensional displays
Thresholding (Imaging)
Training
Transform coding
Title Latent Space Slicing for Enhanced Entropy Modeling In Learning-Based Point Cloud Geometry Compression
URI https://ieeexplore.ieee.org/document/9747496
WOSCitedRecordID wos000864187905034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8KAXf2zib3LwaFyaNk1z1DF1MEZhCruNNnmZg9mO2gn77026OhW8eAkhkAQS-N6XvPe9h9A1eEJxlfqEGS5JwKkhlsdx4gmjLR_XWpgqz-xQjEbRZCLjBrrZamEAoAo-g1vXrXz5Olcr91XWddw3kGETNYUIN1qtLepGIoi-InWo7A56d-NxbK0tc2or29RzfxVRqWzIw_7_dj9AnW8xHo63ZuYQNSA7Qns_8gi2EQwtY8xKPLYPYMDjhfOWz7Clo7ifvVYuftspi3y5xq72mVOg40GG69yqM3JvTZnGcT63a_QW-UrjR8jfoCzW2OHFJlQ266CXh_5z74nU9RPInHG_JCoQWsk0MUxRCKViYDwKTGieJqBFKBSTli8wX1NpFKOJRUbLhphgESTcS_xj1MryDE4QZr7i2qfatwARWAyIdGpU6Nm1U-EpGpyitjuw6XKTImNan9XZ38PnaNfdiXPCM_8CtcpiBZdoR32U8_fiqrrXT3F7pNo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zCurFH1P8bQ4erUvTpmmPOjY3rKOwCbuNNnmZg9mO2gn77026OhW8eAkhkAQS-N6XvPe9h9AN2FwwkTgWVSywXEaUpXkcs2yupObjUnJV5pkNeb_vj0ZBVEO3ay0MAJTBZ3BnuqUvX2ZiYb7Kmob7uoG3gTaZ61KyUmutcdfnrv8Vq0OCZq91PxhE2t5So7fSTTX7VxmV0op09v63_z46-pbj4WhtaA5QDdJDtPsjk2ADQag5Y1rggX4CAx7MjL98gjUhxe30tXTy606RZ_MlNtXPjAYd91JcZVedWA_amEkcZVO9RmuWLSR-hOwNinyJDWKsgmXTI_TSaQ9bXauqoGBNKXMKS7hciiCJFRUEvEBQUDYByiVLYpDc44IGmjFQR5JACUpijY2aD1FOfYiZHTvHqJ5mKZwgTB3BpEOkoyHC1Sjgy0QJz9ZrJ9wWxD1FDXNg4_kqSca4Oquzv4ev0XZ3-ByOw17_6RztmPsxLnnqXKB6kS_gEm2Jj2L6nl-Vd_wJMbqoIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Latent+Space+Slicing+for+Enhanced+Entropy+Modeling+In+Learning-Based+Point+Cloud+Geometry+Compression&rft.au=Frank%2C+Nicolas&rft.au=Lazzarotto%2C+Davi&rft.au=Ebrahimi%2C+Touradj&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4878&rft.epage=4882&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747496&rft.externalDocID=9747496