Event-triggered Multi-agent Optimal Regulation Using Adaptive Dynamic Programming

This paper develops an event-triggered multi-agent control method based on adaptive dynamic programming (ADP) techniques. Different from the traditional ADP-based multi-agent control with fixed sampling period, our method designs an adaptive controller only based on the efficiently reduced samples....

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of ... International Joint Conference on Neural Networks pp. 1 - 8
Main Authors: Zhong, Xiangnan, He, Haibo
Format: Conference Proceeding
Language:English
Published: IEEE 01.07.2020
Subjects:
ISSN:2161-4407
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper develops an event-triggered multi-agent control method based on adaptive dynamic programming (ADP) techniques. Different from the traditional ADP-based multi-agent control with fixed sampling period, our method designs an adaptive controller only based on the efficiently reduced samples. The sampling instants are decided by an adaptive triggering condition to guarantee the stability of the event-triggered learning process. The theoretical analysis of the proposed method is also provided in this paper. It is proved that the designed event-triggered ADP controller can make all the agents synchronize to the leader's dynamics with reduced sampled data, and also reach Nash equilibrium at the same time. Therefore, the proposed method can save the computational resources in the learning process. Finally, the simulation results verify the theoretical analysis and also demonstrate the performance of the developed method.
AbstractList This paper develops an event-triggered multi-agent control method based on adaptive dynamic programming (ADP) techniques. Different from the traditional ADP-based multi-agent control with fixed sampling period, our method designs an adaptive controller only based on the efficiently reduced samples. The sampling instants are decided by an adaptive triggering condition to guarantee the stability of the event-triggered learning process. The theoretical analysis of the proposed method is also provided in this paper. It is proved that the designed event-triggered ADP controller can make all the agents synchronize to the leader's dynamics with reduced sampled data, and also reach Nash equilibrium at the same time. Therefore, the proposed method can save the computational resources in the learning process. Finally, the simulation results verify the theoretical analysis and also demonstrate the performance of the developed method.
Author Zhong, Xiangnan
He, Haibo
Author_xml – sequence: 1
  givenname: Xiangnan
  surname: Zhong
  fullname: Zhong, Xiangnan
  organization: Florida Atlantic University,Department of Computer & Electrical Engineering and Computer Science,Boca Raton,FL,USA
– sequence: 2
  givenname: Haibo
  surname: He
  fullname: He, Haibo
  organization: University of Rhode Island Kingston,Department of Electrical, Computer and Biomedical Engineering,RI,USA
BookMark eNotj9FKwzAYhaMouE6fwAvzAq1__jRpcznqppO5qbjrkaZJiLTdaLvB3t6CuzpwvsPhnIjctPvWEvLEIGEM1PPyvViv01yCSBAQEoWQIYgrErEMcyYVyuyaTJBJFqcpZHck6vtfAORK8Qn5mp9sO8RDF7y3na3ox7EeQqz96NLNYQiNrum39cdaD2Hf0m0fWk9nlR7RydKXc6ubYOhnt_edbpoR3pNbp-vePlx0SraL-U_xFq82r8titooDChxio4UAiczYsgSO0mU5grbAKydLITPNuKg4cJFWY845bpSWRpXGyFI5kHxKHv97g7V2d-jGpd15d7nP_wC7llJ9
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN48605.2020.9207205
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728169267
9781728169262
EISSN 2161-4407
EndPage 8
ExternalDocumentID 9207205
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i252t-ca550621cebb0326f7820ae03df6b567a135d30354d506ff3c9a6c9bcc6b9f063
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626021404111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:31:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i252t-ca550621cebb0326f7820ae03df6b567a135d30354d506ff3c9a6c9bcc6b9f063
OpenAccessLink https://digitalcommons.uri.edu/ele_facpubs/292
PageCount 8
ParticipantIDs ieee_primary_9207205
PublicationCentury 2000
PublicationDate 2020-July
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationTitle Proceedings of ... International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
Score 1.7477452
Snippet This paper develops an event-triggered multi-agent control method based on adaptive dynamic programming (ADP) techniques. Different from the traditional...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms adaptive dynamic programming
and online learning
Dynamic programming
Event-triggered control
Multi-agent systems
Nash equilibrium
Nickel
Stability analysis
Synchronization
Task analysis
Title Event-triggered Multi-agent Optimal Regulation Using Adaptive Dynamic Programming
URI https://ieeexplore.ieee.org/document/9207205
WOSCitedRecordID wos000626021404111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePA0dRO_ycGj2bq0SZejzA0VqVNUdhtJ-iID98Hs_PvNS-tE8OKtpC2BPPI-kt_v_Qi5MNwIlEtlWklgieGK9bSLmTSx5gYSoQOq8vU-zbLeeKxGNXK54cIAQACfQRsfw11-vrBrPCrrKB6lHBuWbqWpLLlam-IKA22F3-pGqnN7188yFFgSvgbkUbv69ZeGSgghw8b_Jt8lrR8uHh1tosweqcF8nzS-xRhotTeb5HGAyEVW-Gr7DfU3aaDWMo3UKfrgHcNMv9OnUnne24IGrAC9yvUSHR69LpXpcSrEa838yxZ5GQ6e-zes0ktgUy54waz25YbkXQvGRD4tc9gLT0MU504aIVPdjUXuQ5ZIcv-dc7FVWlplrJVGOZ-rHJD6fDGHQ0JB-iEdxRas8a7UJ5HK5TaxwEXPe3d3RJq4QpNl2RJjUi3O8d_DJ2QHjVCiXE9JvVit4Yxs289i-rE6D3b8AqXKoBU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QNNETKhjf9uDRwtLdFno0CAHFFQ0abqTttoZEHkHw99vZXTEmXrxturtp0knn0X7ffABXmmmOcqlUSWFppJmkTeVCKnSomLYRVymq8rXfiOPmaCQHBbjecGGstSn4zFbxMb3LT-ZmjUdlNcmCBsOGpVs8iliQsbU25RWG2hzBVQ9krXfXimOUWOK-CmRBNf_5l4pKGkQ6pf9NvweVHzYeGWzizD4U7OwASt9yDCTfnWV4aiN2ka58vf2GCpwkJddSheQp8uhdw1S9k-dMe95bg6RoAXKTqAW6PHKbadPjVIjYmvqXFXjptIetLs0VE-iEcbaiRvmCQ7C6sVoHPjFz2A1P2SBMnNBcNFQ95IkPWjxK_HfOhUYqYaQ2RmjpfLZyCMXZfGaPgFjhh1QQGmu0d6Y-jZQuMZGxjDe9f3fHUMYVGi-yphjjfHFO_h6-hJ3u8KE_7vfi-1PYRYNkmNczKK6Wa3sO2-ZzNflYXqQ2_QInJ6Nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Event-triggered+Multi-agent+Optimal+Regulation+Using+Adaptive+Dynamic+Programming&rft.au=Zhong%2C+Xiangnan&rft.au=He%2C+Haibo&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FIJCNN48605.2020.9207205&rft.externalDocID=9207205