High-Responsivity Ultraviolet Photodetectors With Enhancement of Optical Absorption Using Graphene Components and Al2O3 Layer on Si Substrate
We report on high-responsivity photodetector (PD) designs with Si substrate, Ag layer, graphene (Gr) components, and Al2O3 layer through enhancement of ultraviolet (UV) light absorption. The finite-difference time-domain (FDTD) method is used for PD simulation under normal incidence of UV radiation....
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 24; číslo 5; s. 6006 - 6013 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We report on high-responsivity photodetector (PD) designs with Si substrate, Ag layer, graphene (Gr) components, and Al2O3 layer through enhancement of ultraviolet (UV) light absorption. The finite-difference time-domain (FDTD) method is used for PD simulation under normal incidence of UV radiation. The results indicate that with Si-Ag-Gr PD design, an Al2O3 layer (15-nm thick) considerably increases the absorption causing greater magnitudes of quantum efficiency (<inline-formula> <tex-math notation="LaTeX">\eta {)} </tex-math></inline-formula> and responsivity (<inline-formula> <tex-math notation="LaTeX">\rho {)} </tex-math></inline-formula> in the ultraviolet B (UVB) region (wavelength range: 280-320 nm). In terms of magnitudes, the Si-Ag-Gr-Al2O3 (15 nm) PD design operating at 296.06-nm wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda _{{0}}{)} </tex-math></inline-formula> achieves <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> as large as 0.628 and 0.149 A/W, respectively. At <inline-formula> <tex-math notation="LaTeX">\lambda _{{0}} </tex-math></inline-formula> = 296.06 nm, the magnitude of photocurrent (<inline-formula> <tex-math notation="LaTeX">{I}_{p}{)} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">64 ~\mu \text{A} </tex-math></inline-formula> and the UV-to-visible rejection ratio (<inline-formula> <tex-math notation="LaTeX">{R}_{r}{)} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">0.4\times 10^{{2}} </tex-math></inline-formula>. Furthermore, the use of reduced graphene oxide (rGO) is explored to operate the PD in the ultraviolet A (UVA) region (wavelength range: 320-370 nm) with equally high performance. The simulation results indicate that Si-Ag-rGO-Al2O3 (1 nm) PD design operating at 336.86-nm wavelength provides <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> as large as 0.586 and 0.159 A/W, respectively. At <inline-formula> <tex-math notation="LaTeX">\lambda _{{0}} </tex-math></inline-formula> = 336.86 nm, the magnitude of <inline-formula> <tex-math notation="LaTeX">{I}_{p} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">68.23 ~\mu \text{A} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{R}_{r} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">0.26\times 10^{{2}} </tex-math></inline-formula> for this PD. These UVA- and UVB-specific PD designs (particularly, Gr-based with 99.6% absorption in the UVB region) possess exceptionally large magnitudes of absorbance, which is an indicator of the perfect absorber behavior of the proposed multilayer designs. The proposed PD design can provide superior responsivity compared to recently reported UV PDs. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1530-437X 1558-1748 |
| DOI: | 10.1109/JSEN.2023.3347702 |