MOS-FAD: Improving Fake Audio Detection Via Automatic Mean Opinion Score Prediction

IEEE Automatic Mean Opinion Score (MOS) prediction is employed to evaluate the quality of synthetic speech. This study extends the application of predicted MOS to the task of Fake Audio Detection (FAD) as we expect that MOS can be used to assess how close synthesized speech is to the natural human v...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 876 - 880
Hlavní autoři: Zhou, Wangjin, Yang, Zhengdong, Chu, Chenhui, Li, Sheng, Dabre, Raj, Zhao, Yi, Tatsuya, Kawahara
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 14.04.2024
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:IEEE Automatic Mean Opinion Score (MOS) prediction is employed to evaluate the quality of synthetic speech. This study extends the application of predicted MOS to the task of Fake Audio Detection (FAD) as we expect that MOS can be used to assess how close synthesized speech is to the natural human voice. We propose MOS-FAD, where MOS can be leveraged at two key points in FAD: training data selection and model fusion. In training data selection, we demonstrate that MOS enables effective filtering of samples from unbalanced datasets. In the model fusion, our results demonstrate that incorporating MOS as a gating mechanism in FAD model fusion enhances overall performance.
ISSN:2379-190X
DOI:10.1109/ICASSP48485.2024.10446041