Constant-Factor Approximation Algorithms for Convex Cover and Hidden Set in a Simple Polygon

Given a simple polygon P, the minimum convex cover problem seeks to cover P with the fewest convex polygons that lie within P. The maximum hidden set problem seeks to place within P a maximum cardinality set of points no two of which see each other. We give constant factor approximation algorithms f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS s. 1357 - 1365
Hlavní autori: Browne, Reilly, Kasthurirangan, Prahlad Narasimham, Mitchell, Joseph S. B., Polishchuk, Valentin
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 06.11.2023
Edícia:Annual IEEE Symposium on Foundations of Computer Science
Predmet:
ISBN:9798350318944, 9798350318951
ISSN:2575-8454
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Given a simple polygon P, the minimum convex cover problem seeks to cover P with the fewest convex polygons that lie within P. The maximum hidden set problem seeks to place within P a maximum cardinality set of points no two of which see each other. We give constant factor approximation algorithms for both problems. Previously, the best approximation factor for the minimum convex cover was logarithmic; for the maximum hidden set problem, no approximation algorithm was known.
ISBN:9798350318944
9798350318951
ISSN:2575-8454
DOI:10.1109/FOCS57990.2023.00083