Fully Convolutional Siamese Networks for Change Detection

This paper presents three fully convolutional neural network architectures which perform change detection using a pair of coregistered images. Most notably, we propose two Siamese extensions of fully convolutional networks which use heuristics about the current problem to achieve the best results in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference on Image Processing s. 4063 - 4067
Hlavní autoři: Caye Daudt, Rodrigo, Le Saux, Bertr, Boulch, Alexandre
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2018
Témata:
ISSN:2381-8549
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents three fully convolutional neural network architectures which perform change detection using a pair of coregistered images. Most notably, we propose two Siamese extensions of fully convolutional networks which use heuristics about the current problem to achieve the best results in our tests on two open change detection datasets, using both RGB and multispectral images. We show that our system is able to learn from scratch using annotated change detection images. Our architectures achieve better performance than previously proposed methods, while being at least 500 times faster than related systems. This work is a step towards efficient processing of data from large scale Earth observation systems such as Copernicus or Landsat.
ISSN:2381-8549
DOI:10.1109/ICIP.2018.8451652