Stackelberg solutions to stochastic two-level linear programming problems

This paper considers a two-level linear programming problem involving random variable coefficients to cope with hierarchical decision making problems under uncertainty. Two decision making models are provided to optimize the mean of the objective function value or to minimize the variance. It is sho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making, Honolulu, HI, 1-5 April 2007 s. 240 - 244
Hlavní autori: Katagiri, H., Ichiro, N., Sakawa, M., Kato, K.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2007
Predmet:
ISBN:9781424407026, 1424407028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper considers a two-level linear programming problem involving random variable coefficients to cope with hierarchical decision making problems under uncertainty. Two decision making models are provided to optimize the mean of the objective function value or to minimize the variance. It is shown that the original problem is transformed into a deterministic problem. The computational methods are constructed to obtain the Stackelberg solution to the two-level programming problems. An illustrative numerical example is provided to understand the geometrical properties of the solutions
ISBN:9781424407026
1424407028
DOI:10.1109/MCDM.2007.369445