Learning to Adapt Structured Output Space for Semantic Segmentation
Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to t...
Gespeichert in:
| Veröffentlicht in: | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition S. 7472 - 7481 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2018
|
| Schlagworte: | |
| ISSN: | 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and visual quality. |
|---|---|
| AbstractList | Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and visual quality. |
| Author | Yang, Ming-Hsuan Hung, Wei-Chih Chandraker, Manmohan Sohn, Kihyuk Schulter, Samuel Tsai, Yi-Hsuan |
| Author_xml | – sequence: 1 givenname: Yi-Hsuan surname: Tsai fullname: Tsai, Yi-Hsuan – sequence: 2 givenname: Wei-Chih surname: Hung fullname: Hung, Wei-Chih – sequence: 3 givenname: Samuel surname: Schulter fullname: Schulter, Samuel – sequence: 4 givenname: Kihyuk surname: Sohn fullname: Sohn, Kihyuk – sequence: 5 givenname: Ming-Hsuan surname: Yang fullname: Yang, Ming-Hsuan – sequence: 6 givenname: Manmohan surname: Chandraker fullname: Chandraker, Manmohan |
| BookMark | eNotjLtOwzAUQA0CiVIyM7D4B1Ls-HXvWEW8pEhFFFgrx7GrIOJEjjPw91SC6Ryd4VyTizhGT8gtZxvOGd7Xn69vm4px2DBmgJ2RAg1wJUBrWTE8JyvOtCg1crwixTx_McYqDQKkWpG68TbFPh5pHum2s1Om-5wWl5fkO7pb8rScymSdp2FMdO8HG3PvTnIcfMw292O8IZfBfs---OeafDw-vNfPZbN7eqm3TdlXkufStmiUxABd61C0UgrRscpisB4VBmWVElZJpzFICC04g1oYITsfUBmDYk3u_r699_4wpX6w6ecAygAYEL8PXEyz |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2018.00780 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781538664209 1538664208 |
| EISSN | 1063-6919 |
| EndPage | 7481 |
| ExternalDocumentID | 8578878 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i241t-ab97549f8dbc93b4433d02a9fae959f5a553a54c69f48fb8c7963734def957793 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1343 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843607065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-ab97549f8dbc93b4433d02a9fae959f5a553a54c69f48fb8c7963734def957793 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8578878 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06 |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683845 ssj0003211698 |
| Score | 2.625378 |
| Snippet | Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 7472 |
| SubjectTerms | Adaptation models Image segmentation Layout Prediction algorithms Semantics Task analysis Training |
| Title | Learning to Adapt Structured Output Space for Semantic Segmentation |
| URI | https://ieeexplore.ieee.org/document/8578878 |
| WOSCitedRecordID | wos000457843607065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AePCECsZ3evDoyqPttnM0ROIJiajhRvokHHgEdv39TpcGPXjx1jZ72E4zmfnab74h5D5XVubWoCPlTmccNGQAlmXBgPG9oHPPddVsQo5GajqFcY08HGphvPcV-cw_xmH1lu_WtoxXZR0lIvdN1UldSrmv1Trcp_RzxVR6IYtzhsgmB5XUfHpd6Aw-x2-RyxXJkzLKQP5qp1JFk2Hzf_9xQto_ZXl0fAg4p6TmV2ekmfJImrx01yKDJJo6p8WaPjm9Keikkoktt_jda1lsSlxBsOwppqx04pdo3oXFwXyZSpFWbfIxfH4fvGSpWUK2wCBcZNqARKwXlDMWmOGcMdftawjag4AgtBBMC25zCFwFg0eEricZdz6AkOil56SxWq_8BaHayZ7RiE2MRXSitbaCQYjJIXAnQ_eStKJNZpu9HsYsmePq7-VrchyNvqdX3ZAG7tffkiP7VSx227vqEL8BdtKdXg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSECsZve_DoKkvbbedoiAQjIhE03EjbbQkHFgK7_n7bpUEPXrx1mz3szmQy89o3bxC6TYTmiVYukJJURhQkRACaRFaBMrGViaGyHDbB-30xHsOggu62vTDGmJJ8Zu79srzLTxe68EdlD4J57pvYQbuM0la86dbanqi0EkFEuCPzz8RhmwRE0POJm_DQ_hy8ezaXp09yLwT5a6BKmU86tf99ySFq_DTm4cE25RyhismOUS1UkjjE6bqO2kE2dYrzBX5M5TLHw1Iotli5996KfFm4HQeXDXZFKx6auTPwTLvFdB6akbIG-ug8jdrdKIxLiGYuDeeRVMAd2rMiVRqIopSQtNmSYKUBBpZJxohkVCdgqbDKOckFHyc0NRYYd3F6gqrZIjOnCMuUx0o6dKK0wydSSs0IWF8eAk25bZ6hurfJZLlRxJgEc5z_vX2D9ruj196k99x_uUAH3gEbstUlqrp_N1doT3_ls_XqunToN9fHoKU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Learning+to+Adapt+Structured+Output+Space+for+Semantic+Segmentation&rft.au=Tsai%2C+Yi-Hsuan&rft.au=Hung%2C+Wei-Chih&rft.au=Schulter%2C+Samuel&rft.au=Sohn%2C+Kihyuk&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7472&rft.epage=7481&rft_id=info:doi/10.1109%2FCVPR.2018.00780&rft.externalDocID=8578878 |