Colors in multimodal data: Dominant line extraction inspired by computer vision techniques

In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE International Geoscience and Remote Sensing Symposium proceedings S. 9 - 12
Hauptverfasser: Nishikawa, Tomohiro, Tanaka, Yuichi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2017
Schlagworte:
ISSN:2153-7003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correlation among RGB channels in computer vision. It represents real color images as a collection of multiple lines in RGB color space. By extracting color lines from multimodal data, our proposed method can utilize hidden inter-channel relationships unlike conventional methods. We apply the proposed method for compressing a multimodal data matrix and show its effectiveness.
ISSN:2153-7003
DOI:10.1109/IGARSS.2017.8126820