Colors in multimodal data: Dominant line extraction inspired by computer vision techniques
In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correl...
Uloženo v:
| Vydáno v: | IEEE International Geoscience and Remote Sensing Symposium proceedings s. 9 - 12 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2017
|
| Témata: | |
| ISSN: | 2153-7003 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correlation among RGB channels in computer vision. It represents real color images as a collection of multiple lines in RGB color space. By extracting color lines from multimodal data, our proposed method can utilize hidden inter-channel relationships unlike conventional methods. We apply the proposed method for compressing a multimodal data matrix and show its effectiveness. |
|---|---|
| AbstractList | In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correlation among RGB channels in computer vision. It represents real color images as a collection of multiple lines in RGB color space. By extracting color lines from multimodal data, our proposed method can utilize hidden inter-channel relationships unlike conventional methods. We apply the proposed method for compressing a multimodal data matrix and show its effectiveness. |
| Author | Tanaka, Yuichi Nishikawa, Tomohiro |
| Author_xml | – sequence: 1 givenname: Tomohiro surname: Nishikawa fullname: Nishikawa, Tomohiro email: tnishikawa@msp-lab.org organization: Tokyo Univ. of Agric. & Technol., Tokyo, Japan – sequence: 2 givenname: Yuichi surname: Tanaka fullname: Tanaka, Yuichi email: ytnk@cc.tuat.ac.jp organization: Tokyo Univ. of Agric. & Technol., Tokyo, Japan |
| BookMark | eNotkMFOwzAQRA0CibbwBb34B1J2ncRJuFUFSqVKSBQuXConXgujxC6xg-jfE0RP86R5msNM2YXzjhibIywQobrdrJcvu91CABaLEoUsBZyxKeZQQVblWJyzicA8TQqA9IpNQ_gcYZRgwt5XvvV94Nbxbmij7bxWLdcqqjt-7zvrlIu8tY44_cReNdF6N8rhYHvSvD7yxneHIVLPv2346yI1H85-DRSu2aVRbaCbU87Y2-PD6-op2T6vN6vlNrEiw5gUCnSlZYWmBCkR6hxJmTolqIWWpLFUhlShykyTqoRJczQkdSPJUF1Snc7Y_H_XEtH-0NtO9cf96Yf0F9lqVyg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IGARSS.2017.8126820 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISBN | 1509049517 9781509049516 |
| EISSN | 2153-7003 |
| EndPage | 12 |
| ExternalDocumentID | 8126820 |
| Genre | orig-research |
| GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i241t-7a0d9d691f806610b51eafb3e0b2d6ed18afea7a84dea92f351fe6dc6efeb8eb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426954600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:38:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-7a0d9d691f806610b51eafb3e0b2d6ed18afea7a84dea92f351fe6dc6efeb8eb3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_8126820 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
| PublicationTitleAbbrev | IGARSS |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0038200 |
| Score | 1.6455008 |
| Snippet | In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 9 |
| SubjectTerms | Clustering algorithms color lines compression Correlation Data mining Estimation Image color analysis Multimodal data Ocean temperature Principal component analysis sensor network sparse coding |
| Title | Colors in multimodal data: Dominant line extraction inspired by computer vision techniques |
| URI | https://ieeexplore.ieee.org/document/8126820 |
| WOSCitedRecordID | wos000426954600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7aouDJRyu-ycGj2266u8nGm_iogpRiFYqXkscECror21bovzfZXSuCF29hSAgkMN9M8n0zAOfMhoYr2w-0ETyIlTWBsKiDJElVbDUVtqqu_8iHw3QyEaMGXKy1MIhYks-w64flX77J9dI_lfUcGDGHWE1ocs4qrda3142cPayrCtFQ9B4GV0_jsadu8W697Ff_lBI-7rb_t_EOdH50eGS0RphdaGC2B5uDshnvqg2vLuvPizmZZaTkBb7nRr4Rz_m8JDd5xXEhPowkzgMXlYLBTfZ_62iIWhFdt3QglcKcrAu6zjvwcnf7fH0f1L0SgpnD4EXAZWiEYYLa1AURNFQJRWlVhKHqG4aGptKi5DKNDUrRt1FCLTKjGVpUqcuo96GV5RkeANEiUYkMbeRCqRipkDQ2caS0RubjAXMIbX9C04-qHMa0Ppyjv83HsOUvoWK4nkBrUSzxFDb052I2L87KO_wC2Z6hsA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA61KnpyqeJuDh6dNpnJLPEmahespdgKxUvJ8gIF7ci0FfrvTWbGiuDFW8hCIIF87-V933sIXUWG6Fga31Oaxx6TRnvcgPLCMJHMKMpNkV2_G_d6yWjE-xV0vdLCAEBOPoO6a-axfJ2qhfsqa1gwiixiraH1kDGfFGqt73c3sCOkzCtECW90WrfPg4Ejb8X1cuGvCio5gDR3_rf1Ljr4UeLh_gpj9lAFpvtos5WX413W0Kv1-9NshidTnDMD31Mt3rBjfd7g-7RguWBnSGL7BmeFhsFOdtF10FgusSqLOuBCY45XKV1nB-il-TC8a3tltQRvYlF47sWCaK4jTk1izQhKZEhBGBkAkb6OQNNEGBCxSJgGwX0ThNRApFUEBmRifepDVJ2mUzhCWPFQhoKYwBpTDCgXlGkWSKUgchaBPkY1d0LjjyIhxrg8nJO_uy_RVnv41B13O73HU7TtLqTgu56h6jxbwDnaUJ_zySy7yO_zC25NpPc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Colors+in+multimodal+data%3A+Dominant+line+extraction+inspired+by+computer+vision+techniques&rft.au=Nishikawa%2C+Tomohiro&rft.au=Tanaka%2C+Yuichi&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=9&rft.epage=12&rft_id=info:doi/10.1109%2FIGARSS.2017.8126820&rft.externalDocID=8126820 |