Colors in multimodal data: Dominant line extraction inspired by computer vision techniques

In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Geoscience and Remote Sensing Symposium proceedings s. 9 - 12
Hlavní autoři: Nishikawa, Tomohiro, Tanaka, Yuichi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2017
Témata:
ISSN:2153-7003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correlation among RGB channels in computer vision. It represents real color images as a collection of multiple lines in RGB color space. By extracting color lines from multimodal data, our proposed method can utilize hidden inter-channel relationships unlike conventional methods. We apply the proposed method for compressing a multimodal data matrix and show its effectiveness.
AbstractList In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor network data by utilizing high correlation among channels in the data. We exploit the idea of Color Lines, which is a model using high correlation among RGB channels in computer vision. It represents real color images as a collection of multiple lines in RGB color space. By extracting color lines from multimodal data, our proposed method can utilize hidden inter-channel relationships unlike conventional methods. We apply the proposed method for compressing a multimodal data matrix and show its effectiveness.
Author Tanaka, Yuichi
Nishikawa, Tomohiro
Author_xml – sequence: 1
  givenname: Tomohiro
  surname: Nishikawa
  fullname: Nishikawa, Tomohiro
  email: tnishikawa@msp-lab.org
  organization: Tokyo Univ. of Agric. & Technol., Tokyo, Japan
– sequence: 2
  givenname: Yuichi
  surname: Tanaka
  fullname: Tanaka, Yuichi
  email: ytnk@cc.tuat.ac.jp
  organization: Tokyo Univ. of Agric. & Technol., Tokyo, Japan
BookMark eNotkMFOwzAQRA0CibbwBb34B1J2ncRJuFUFSqVKSBQuXConXgujxC6xg-jfE0RP86R5msNM2YXzjhibIywQobrdrJcvu91CABaLEoUsBZyxKeZQQVblWJyzicA8TQqA9IpNQ_gcYZRgwt5XvvV94Nbxbmij7bxWLdcqqjt-7zvrlIu8tY44_cReNdF6N8rhYHvSvD7yxneHIVLPv2346yI1H85-DRSu2aVRbaCbU87Y2-PD6-op2T6vN6vlNrEiw5gUCnSlZYWmBCkR6hxJmTolqIWWpLFUhlShykyTqoRJczQkdSPJUF1Snc7Y_H_XEtH-0NtO9cf96Yf0F9lqVyg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2017.8126820
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1509049517
9781509049516
EISSN 2153-7003
EndPage 12
ExternalDocumentID 8126820
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-7a0d9d691f806610b51eafb3e0b2d6ed18afea7a84dea92f351fe6dc6efeb8eb3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426954600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:38:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-7a0d9d691f806610b51eafb3e0b2d6ed18afea7a84dea92f351fe6dc6efeb8eb3
PageCount 4
ParticipantIDs ieee_primary_8126820
PublicationCentury 2000
PublicationDate 2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07
PublicationDecade 2010
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.6455008
Snippet In this paper, we propose a multiple line extraction method from multimodal data points in high dimensional space. It can sparsely represent multimodal sensor...
SourceID ieee
SourceType Publisher
StartPage 9
SubjectTerms Clustering algorithms
color lines
compression
Correlation
Data mining
Estimation
Image color analysis
Multimodal data
Ocean temperature
Principal component analysis
sensor network
sparse coding
Title Colors in multimodal data: Dominant line extraction inspired by computer vision techniques
URI https://ieeexplore.ieee.org/document/8126820
WOSCitedRecordID wos000426954600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qUfDkRyt-swePps02ZrPrTdRWL6VYheKl7GZnoaCJpK3Qf-9sEiuCFy9hWRICMzBvZve9GYCL2EnODdeBUPSggIeBJmcEwqQEgFqpNDblsIlkOJSTiRo14HKthUHEknyGHb8s7_Jtni79UVmXwEgQYm3ARpKISqv1HXUj2g_rrkI8VN3Hwc3TeOypW0mn_uzX_JQSPvo7__vxLrR_dHhstEaYPWhgtg9bg3IY76oFr1T158WczTJW8gLfc6vfmOd8XrO7vOK4MJ9GMorARaVgoJf93TpaZlYsrUc6sEphztYNXedteOnfP98-BPWshGBGGLwIEh1aZcngTlISwUMTc9TORBianhVoudQOdaLllUWtei6KuUNhU4EOjaSK-gCaWZ7hIbBY9YyIEil0SslShJpKsjBGQZVRhJS9HEHLW2j6UbXDmNbGOf57-wS2vRMqhuspNBfFEs9gM_1czObFeenDLzctn98
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qVfTko4pv9-DRtNmk2STeRO0Daym2QvFSdrMTKGgiaSv03zubxIrgxUtYkiyBGZhvJvvNfABXXhxwrri0REgXCnhoSXKGJVREACjDMPJULjbh9_vBeBwOKnC96oVBxJx8hnWzzM_ydRotzK-yBoGRIMRag3Wv2XTsolvrO-669MQu5wpxO2x027fPw6Ehb_n1cuMvBZUcQFo7__v0Lhz8dOKxwQpj9qCCyT5stnM53mUNXqnuT7MZmyYsZwa-p1q-McP6vGH3acFyYSaRZBSDs6KHgV42p-uomVqyqBR1YEWPOVuNdJ0dwEvrYXTXsUq1BGtKKDy3fGnrUJPJ44DSCG4rj6OMlYu2crRAzQMZo_Rl0NQoQyd2PR6j0JHAGFVANfUhVJM0wSNgXugo4fqBkBGlSy5KKspsDwXVRi5S_nIMNWOhyUcxEGNSGufk79uXsNUZPfUmvW7_8RS2jUMKvusZVOfZAs9hI_qcT2fZRe7PL7PLoyY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Colors+in+multimodal+data%3A+Dominant+line+extraction+inspired+by+computer+vision+techniques&rft.au=Nishikawa%2C+Tomohiro&rft.au=Tanaka%2C+Yuichi&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=9&rft.epage=12&rft_id=info:doi/10.1109%2FIGARSS.2017.8126820&rft.externalDocID=8126820