A Tight Combinatorial Algorithm for Submodular Maximization Subject to a Matroid Constraint

We present an optimal, combinatorial 1-1/e approximation algorithm for monotone sub modular optimization over a matroid constraint. Compared to the continuous greedy algorithm (Calinescu, Chekuri, Pal and Vondrak, 2008), our algorithm is extremely simple and requires no rounding. It consists of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 IEEE 53rd Annual Symposium on Foundations of Computer Science s. 659 - 668
Hlavní autori: Filmus, Y., Ward, J.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2012
Predmet:
ISBN:1467343838, 9781467343831
ISSN:0272-5428
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present an optimal, combinatorial 1-1/e approximation algorithm for monotone sub modular optimization over a matroid constraint. Compared to the continuous greedy algorithm (Calinescu, Chekuri, Pal and Vondrak, 2008), our algorithm is extremely simple and requires no rounding. It consists of the greedy algorithm followed by local search. Both phases are run not on the actual objective function, but on a related non-oblivious potential function, which is also monotone sub modular. In our previous work on maximum coverage (Filmus and Ward, 2011), the potential function gives more weight to elements covered multiple times. We generalize this approach from coverage functions to arbitrary monotone sub modular functions. When the objective function is a coverage function, both definitions of the potential function coincide. The parameters used to define the potential function are closely related to Pade approximants of exp(x) evaluated at x = 1. We use this connection to determine the approximation ratio of the algorithm.
ISBN:1467343838
9781467343831
ISSN:0272-5428
DOI:10.1109/FOCS.2012.55