Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology

In this paper, a Stacked Sparse Autoencoder (SSAE) based framework is presented for nuclei classification on breast cancer histopathology. SSAE works very well in learning useful high-level feature for better representation of input raw data. To show the effectiveness of proposed framework, SSAE+Sof...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Symposium on Biomedical Imaging) s. 999 - 1002
Hlavní autoři: Jun Xu, Lei Xiang, Renlong Hang, Jianzhong Wu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2014
Témata:
ISSN:1945-7928
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a Stacked Sparse Autoencoder (SSAE) based framework is presented for nuclei classification on breast cancer histopathology. SSAE works very well in learning useful high-level feature for better representation of input raw data. To show the effectiveness of proposed framework, SSAE+Softmax is compared with conventional Softmax classifier, PCA+Softmax, and single layer Sparse Autoencoder (SAE)+Softmax in classifying the nuclei and non-nuclei patches extracted from breast cancer histopathology. The SSAE+Softmax for nuclei patch classification yields an accuracy of 83.7%, F1 score of 82%, and AUC of 0.8992, which outperform Softmax classifier, PCA+Softmax, and SAE+Softmax.
ISSN:1945-7928
DOI:10.1109/ISBI.2014.6868041