Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology
In this paper, a Stacked Sparse Autoencoder (SSAE) based framework is presented for nuclei classification on breast cancer histopathology. SSAE works very well in learning useful high-level feature for better representation of input raw data. To show the effectiveness of proposed framework, SSAE+Sof...
Uložené v:
| Vydané v: | Proceedings (International Symposium on Biomedical Imaging) s. 999 - 1002 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.04.2014
|
| Predmet: | |
| ISSN: | 1945-7928 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, a Stacked Sparse Autoencoder (SSAE) based framework is presented for nuclei classification on breast cancer histopathology. SSAE works very well in learning useful high-level feature for better representation of input raw data. To show the effectiveness of proposed framework, SSAE+Softmax is compared with conventional Softmax classifier, PCA+Softmax, and single layer Sparse Autoencoder (SAE)+Softmax in classifying the nuclei and non-nuclei patches extracted from breast cancer histopathology. The SSAE+Softmax for nuclei patch classification yields an accuracy of 83.7%, F1 score of 82%, and AUC of 0.8992, which outperform Softmax classifier, PCA+Softmax, and SAE+Softmax. |
|---|---|
| ISSN: | 1945-7928 |
| DOI: | 10.1109/ISBI.2014.6868041 |