Asynchrounous Decentralized Learning of a Neural Network
In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network (SSFN) in a decentralized scenario. Using this algorithm namely asynchronous decentralized SSFN (dSSFN), we provide the centralized equivale...
Saved in:
| Published in: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 3947 - 3951 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.05.2020
|
| Subjects: | |
| ISSN: | 2379-190X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network (SSFN) in a decentralized scenario. Using this algorithm namely asynchronous decentralized SSFN (dSSFN), we provide the centralized equivalent solution under certain technical assumptions. Asynchronous dSSFN relaxes the communication bottleneck by allowing one node activation and one side communication, which reduces the communication overhead significantly, consequently increasing the learning speed. We compare asynchronous dSSFN with traditional synchronous dSSFN in the experimental results, which shows the competitive performance of asynchronous dSSFN, especially when the communication network is sparse. |
|---|---|
| AbstractList | In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network (SSFN) in a decentralized scenario. Using this algorithm namely asynchronous decentralized SSFN (dSSFN), we provide the centralized equivalent solution under certain technical assumptions. Asynchronous dSSFN relaxes the communication bottleneck by allowing one node activation and one side communication, which reduces the communication overhead significantly, consequently increasing the learning speed. We compare asynchronous dSSFN with traditional synchronous dSSFN in the experimental results, which shows the competitive performance of asynchronous dSSFN, especially when the communication network is sparse. |
| Author | Skoglund, Mikael Javid, Alireza M. Chatterjee, Saikat Liang, Xinyue |
| Author_xml | – sequence: 1 givenname: Xinyue surname: Liang fullname: Liang, Xinyue organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden – sequence: 2 givenname: Alireza M. surname: Javid fullname: Javid, Alireza M. organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden – sequence: 3 givenname: Mikael surname: Skoglund fullname: Skoglund, Mikael organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden – sequence: 4 givenname: Saikat surname: Chatterjee fullname: Chatterjee, Saikat organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden |
| BookMark | eNotj81KxDAURqMoODPOE7jJC7TemzRN7nIYf6GoMAruhjRNtDqmkrbI-PQWnNVZfPBxzpydxC56xjhCjgh0eb9ebTZPBWhd5gIE5ARKEpVHbEnaoAKCspSojtlMSE0ZEryesXnffwCA0YWZMbPq99G9p26M3djzK-98HJLdtb--4ZW3KbbxjXeBW_7gx2mYMPx06fOcnQa76_3ywAV7ubl-Xt9l1ePt5FVlrShwyFBYb5wsg25MUAVasLoma1A4qm1wTWOJCq2E8yEEhFBroayYahoUQTm5YBf_v633fvud2i-b9ttDqPwDQo1LIA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP40776.2020.9053996 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781509066315 1509066314 |
| EISSN | 2379-190X |
| EndPage | 3951 |
| ExternalDocumentID | 9053996 |
| Genre | orig-research |
| GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i241t-12ae8c36f7d8f541a0a7b9a812c9bafcdda994752cefff10fb725a2202d12f5c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615970404039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:46:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-12ae8c36f7d8f541a0a7b9a812c9bafcdda994752cefff10fb725a2202d12f5c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9053996 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-May |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 |
| Score | 2.1674578 |
| Snippet | In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3947 |
| SubjectTerms | Asynchronous Communication networks convex optimization decentralized learning Feedforward neural networks neural networks Optimization Signal processing Signal processing algorithms Sparse matrices Speech processing |
| Title | Asynchrounous Decentralized Learning of a Neural Network |
| URI | https://ieeexplore.ieee.org/document/9053996 |
| WOSCitedRecordID | wos000615970404039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlrxzR48uu0mm90kx1IteimFKvRW8hpZkK30IeivN9muVcGLp4RACJmQfJPkm28ArhW1wqOKjq339mOGyGOl_X7UlKUakRGGrEo2wUcjMZ3KcQNutrEwzrmKfOa6oVr95du5WYensp5Mgo5q3oQm5_kmVmt76grOxBdTJ5G9h0F_MhmzIFbjL4E06dZ9fyVRqTBkuP-_0Q-g8x2MF423MHMIDVcewd4PHcE2iP7yvTQh404QXI1uXU25LD6cjWoF1edojpGKghiHevFFxf7uwNPw7nFwH9cpEeLCQ-0qJlQ5YdIcuRWYMaISxbVUHqWN1AqNtUpKxjNqHCKSBDWnmaLeApZQzEx6DK1yXroTiBSxXFuSmzy1TDMljXf-VJphKnRGTH4K7WCD2etG9WJWT__s7-Zz2A1m3lABL6C1WqzdJeyYt1WxXFxVS_UJo6OWAQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLj1Z8uwePbrvJZjfJsVRLi7UUWqG3kmcpyFb6EPTXm2zXquDFU0IghExIvknyzTcAtwJr5lBFhtp5-yGxloZCuv0oMYmltQQRS_JkE7TXY6MR75fgbhMLY4zJyWem5qv5X76eqZV_KqvzyOuopluwnRCCo3W01ubcZZSwL65OxOudZmMw6BMvV-OugTiqFb1_pVHJUaR18L_xD6H6HY4X9DdAcwQlkx3D_g8lwQqwxuI9Uz7njpdcDe5NQbqcfhgdFBqqk2BmAxF4OQ7x4oqc_12F59bDsNkOi6QI4dSB7TJEWBim4tRSzWxCkIgElVw4nFZcCqu0FpwTmmBlrLUospLiRGBnAY2wTVR8AuVslplTCATSVGqUqjTWRBLBlXP_RJzYmMkEqfQMKt4G49e17sW4mP753803sNsePnXH3U7v8QL2vMnXxMBLKC_nK3MFO-ptOV3Mr_Nl-wSh_JlI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Asynchrounous+Decentralized+Learning+of+a+Neural+Network&rft.au=Liang%2C+Xinyue&rft.au=Javid%2C+Alireza+M.&rft.au=Skoglund%2C+Mikael&rft.au=Chatterjee%2C+Saikat&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3947&rft.epage=3951&rft_id=info:doi/10.1109%2FICASSP40776.2020.9053996&rft.externalDocID=9053996 |