Asynchrounous Decentralized Learning of a Neural Network

In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network (SSFN) in a decentralized scenario. Using this algorithm namely asynchronous decentralized SSFN (dSSFN), we provide the centralized equivale...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 3947 - 3951
Hlavní autoři: Liang, Xinyue, Javid, Alireza M., Skoglund, Mikael, Chatterjee, Saikat
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2020
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network (SSFN) in a decentralized scenario. Using this algorithm namely asynchronous decentralized SSFN (dSSFN), we provide the centralized equivalent solution under certain technical assumptions. Asynchronous dSSFN relaxes the communication bottleneck by allowing one node activation and one side communication, which reduces the communication overhead significantly, consequently increasing the learning speed. We compare asynchronous dSSFN with traditional synchronous dSSFN in the experimental results, which shows the competitive performance of asynchronous dSSFN, especially when the communication network is sparse.
AbstractList In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network (SSFN) in a decentralized scenario. Using this algorithm namely asynchronous decentralized SSFN (dSSFN), we provide the centralized equivalent solution under certain technical assumptions. Asynchronous dSSFN relaxes the communication bottleneck by allowing one node activation and one side communication, which reduces the communication overhead significantly, consequently increasing the learning speed. We compare asynchronous dSSFN with traditional synchronous dSSFN in the experimental results, which shows the competitive performance of asynchronous dSSFN, especially when the communication network is sparse.
Author Skoglund, Mikael
Javid, Alireza M.
Chatterjee, Saikat
Liang, Xinyue
Author_xml – sequence: 1
  givenname: Xinyue
  surname: Liang
  fullname: Liang, Xinyue
  organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden
– sequence: 2
  givenname: Alireza M.
  surname: Javid
  fullname: Javid, Alireza M.
  organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden
– sequence: 3
  givenname: Mikael
  surname: Skoglund
  fullname: Skoglund, Mikael
  organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden
– sequence: 4
  givenname: Saikat
  surname: Chatterjee
  fullname: Chatterjee, Saikat
  organization: KTH Royal Institute of Technology,Division of Information Science and Engineering School of Electrical Engineering and Computer Science,Sweden
BookMark eNotj81KxDAURqMoODPOE7jJC7TemzRN7nIYf6GoMAruhjRNtDqmkrbI-PQWnNVZfPBxzpydxC56xjhCjgh0eb9ebTZPBWhd5gIE5ARKEpVHbEnaoAKCspSojtlMSE0ZEryesXnffwCA0YWZMbPq99G9p26M3djzK-98HJLdtb--4ZW3KbbxjXeBW_7gx2mYMPx06fOcnQa76_3ywAV7ubl-Xt9l1ePt5FVlrShwyFBYb5wsg25MUAVasLoma1A4qm1wTWOJCq2E8yEEhFBroayYahoUQTm5YBf_v633fvud2i-b9ttDqPwDQo1LIA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP40776.2020.9053996
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509066315
1509066314
EISSN 2379-190X
EndPage 3951
ExternalDocumentID 9053996
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-12ae8c36f7d8f541a0a7b9a812c9bafcdda994752cefff10fb725a2202d12f5c3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615970404039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-12ae8c36f7d8f541a0a7b9a812c9bafcdda994752cefff10fb725a2202d12f5c3
PageCount 5
ParticipantIDs ieee_primary_9053996
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1673539
Snippet In this work, we exploit an asynchronous computing framework namely ARock to learn a deep neural network called self-size estimating feedforward neural network...
SourceID ieee
SourceType Publisher
StartPage 3947
SubjectTerms Asynchronous
Communication networks
convex optimization
decentralized learning
Feedforward neural networks
neural networks
Optimization
Signal processing
Signal processing algorithms
Sparse matrices
Speech processing
Title Asynchrounous Decentralized Learning of a Neural Network
URI https://ieeexplore.ieee.org/document/9053996
WOSCitedRecordID wos000615970404039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL20xYVufLTim1m4dNpMJpPHslSLgpRCFbormZtECjItfQj69SbTsSq4cZUQCCEnkJPHuecCXOs8wdSkJjZc5THLVBZrpXRsU8P8eVxSxstA4UcxGMjxWA1rcLONhbHWluIz2w7V8i_fzHAdnso6igQfVV6HuhB8E6u13XWlYPJLqUNU56HXHY2GLJjV-EsgJe2q768kKiWH9Pf_N_oBtL6D8aLhlmYOoWaLI9j74SPYBNldvhcYMu4Ew9Xo1laSy-mHNVHloPoSzVyko2DGoV99Uaq_W_Dcv3vq3cdVSoR46ql2FSdUW4kpd8JIl7FEEy1ypT1Lo8q1Q2M80kxkFK1zLiEuFzTT1CNgEuoyTI-hUcwKewIR50S4BJ20xDLqbx1Eo0OCAiUaLvNTaAYMJvON68Wkmv7Z383nsBtg3kgBL6CxWqztJezg22q6XFyVS_UJmr-WNQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL3UKqgbH1V8OwuXTpvJZCbJslRLi7UUWqG7krlJpCCt9CHo15tMx6rgxlVCIIScQE4e554LcKOyCGMd61CnMgtZIpNQSalCE2vmzuOCsjQPFO7wblcMh7JXgtt1LIwxJhefmaqv5n_5eopL_1RWk8T7qKYbsJkwRskqWmu97wrOxJdWh8hau1Hv93vM29W4ayAl1aL3rzQqOYs09_43_j4cfYfjBb010RxAyUwOYfeHk2AFRH3-PkGfc8dbrgZ3phBdjj-MDgoP1edgagMVeDsO9eKKXP99BE_N-0GjFRZJEcKxI9tFGFFlBMap5VrYhEWKKJ5J5XgaZaYsau2wZjyhaKy1EbEZp4miDgEdUZtgfAzlyXRiTiBIU8JthFYYYhh19w6i0CJBjgJ1KrJTqHgMRq8r34tRMf2zv5uvYbs1eOyMOu3uwznseMhXwsALKC9mS3MJW_i2GM9nV_myfQKbZpl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Asynchrounous+Decentralized+Learning+of+a+Neural+Network&rft.au=Liang%2C+Xinyue&rft.au=Javid%2C+Alireza+M.&rft.au=Skoglund%2C+Mikael&rft.au=Chatterjee%2C+Saikat&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3947&rft.epage=3951&rft_id=info:doi/10.1109%2FICASSP40776.2020.9053996&rft.externalDocID=9053996