The Limitation and Practical Acceleration of Stochastic Gradient Algorithms in Inverse Problems

In this work we investigate the practicability of stochastic gradient descent and recently introduced variants with variance-reduction techniques in imaging inverse problems, such as space-varying image deblurring. Such algorithms have been shown in machine learning literature to have optimal comple...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 7680 - 7684
Hlavní autoři: Tang, Junqi, Egiazarian, Karen, Davies, Mike
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2019
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work we investigate the practicability of stochastic gradient descent and recently introduced variants with variance-reduction techniques in imaging inverse problems, such as space-varying image deblurring. Such algorithms have been shown in machine learning literature to have optimal complexities in theory, and provide great improvement empirically over the full gradient methods. Surprisingly, in some tasks such as image deblurring, many of such methods fail to converge faster than the accelerated full gradient method (FISTA), even in terms of epoch counts. We investigate this phenomenon and propose a theory-inspired mechanism to characterize whether a given inverse problem should be preferred to be solved by stochastic optimization technique with a known sampling pattern. Furthermore, to overcome another key bottleneck of stochastic optimization which is the heavy computation of proximal operators while maintaining fast convergence, we propose an accelerated primal-dual SGD algorithm and demonstrate the effectiveness of our approach in image deblurring experiments.
ISSN:2379-190X
DOI:10.1109/ICASSP.2019.8683368