An alternating optimization algorithm for two-channel factor analysis with common and uncommon factors
An alternating optimization algorithm is presented and analyzed for identifying low-rank signal components, known in factor analysis terminology as common factors, that are correlated across two multiple-input multiple-output (MIMO) channels. The additive noise model at each of the MIMO channels con...
Uloženo v:
| Vydáno v: | Conference record - Asilomar Conference on Signals, Systems, & Computers s. 1743 - 1747 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2018
|
| Témata: | |
| ISSN: | 2576-2303 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An alternating optimization algorithm is presented and analyzed for identifying low-rank signal components, known in factor analysis terminology as common factors, that are correlated across two multiple-input multiple-output (MIMO) channels. The additive noise model at each of the MIMO channels consists of white uncorrelated noises of unequal variances plus a low-rank structured interference that is not correlated across the two channels. The low-rank components at each channel represent uncommon or channel-specific factors. |
|---|---|
| ISSN: | 2576-2303 |
| DOI: | 10.1109/ACSSC.2018.8645457 |