Personalized News Recommendation Based on Collaborative Filtering
Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We obse...
Uložené v:
| Vydané v: | 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 437 - 441 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2012
|
| Predmet: | |
| ISBN: | 9781467360579, 1467360570 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results. |
|---|---|
| ISBN: | 9781467360579 1467360570 |
| DOI: | 10.1109/WI-IAT.2012.95 |

