Supervised Descent Method and Its Applications to Face Alignment

Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved through a nonlinear optimization method. It is generally accepted that 2nd order descent methods are the most robust, fast and reliable approaches for nonlinear optimization of a general smoot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 IEEE Conference on Computer Vision and Pattern Recognition s. 532 - 539
Hlavní autoři: Xuehan Xiong, De la Torre, Fernando
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2013
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved through a nonlinear optimization method. It is generally accepted that 2nd order descent methods are the most robust, fast and reliable approaches for nonlinear optimization of a general smooth function. However, in the context of computer vision, 2nd order descent methods have two main drawbacks: (1) The function might not be analytically differentiable and numerical approximations are impractical. (2) The Hessian might be large and not positive definite. To address these issues, this paper proposes a Supervised Descent Method (SDM) for minimizing a Non-linear Least Squares (NLS) function. During training, the SDM learns a sequence of descent directions that minimizes the mean of NLS functions sampled at different points. In testing, SDM minimizes the NLS objective using the learned descent directions without computing the Jacobian nor the Hessian. We illustrate the benefits of our approach in synthetic and real examples, and show how SDM achieves state-of-the-art performance in the problem of facial feature detection. The code is available at www.humansensing.cs. cmu.edu/intraface.
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2013.75