Supervised Descent Method and Its Applications to Face Alignment

Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved through a nonlinear optimization method. It is generally accepted that 2nd order descent methods are the most robust, fast and reliable approaches for nonlinear optimization of a general smoot...

Full description

Saved in:
Bibliographic Details
Published in:2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 532 - 539
Main Authors: Xuehan Xiong, De la Torre, Fernando
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2013
Subjects:
ISSN:1063-6919, 1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved through a nonlinear optimization method. It is generally accepted that 2nd order descent methods are the most robust, fast and reliable approaches for nonlinear optimization of a general smooth function. However, in the context of computer vision, 2nd order descent methods have two main drawbacks: (1) The function might not be analytically differentiable and numerical approximations are impractical. (2) The Hessian might be large and not positive definite. To address these issues, this paper proposes a Supervised Descent Method (SDM) for minimizing a Non-linear Least Squares (NLS) function. During training, the SDM learns a sequence of descent directions that minimizes the mean of NLS functions sampled at different points. In testing, SDM minimizes the NLS objective using the learned descent directions without computing the Jacobian nor the Hessian. We illustrate the benefits of our approach in synthetic and real examples, and show how SDM achieves state-of-the-art performance in the problem of facial feature detection. The code is available at www.humansensing.cs. cmu.edu/intraface.
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2013.75