Exploring Parallel Implementations of the Bayesian Probabilistic Matrix Factorization

Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used beca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP) S. 119 - 126
Hauptverfasser: Chakroun, Imen, Haber, Tom, Aa, Tom Vander, Kovac, Thomas
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.02.2016
Schlagworte:
ISSN:2377-5750
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used because of the prohibitive cost. In this paper, we propose a comprehensive parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We also propose an insight of a GPU-based implementation of this algorithm.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2377-5750
DOI:10.1109/PDP.2016.48