An Intelligent Diagnosis Flu System Based on Adaptive Neuro-Fuzzy Classifer

This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG), neuro-fuzzy classifier with linguistic hedges (NFCLH) and linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF) to develop an in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Symposium on Computing and Networking (Online) s. 547 - 550
Hlavní autoři: Hsieh, Sheng-Ta, Lin, Chun-Ling
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.12.2015
Témata:
ISSN:2379-1896
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG), neuro-fuzzy classifier with linguistic hedges (NFCLH) and linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF) to develop an intelligent diagnosis flu system. Gaussian membership function is used for fuzzy set descriptions. Leave-one-subject-out (LOSO) cross-validation is used to estimate the performance of three neuro-fuzzy classifiers. The results shows NFCSCG, NFCLF and LHNFCSF achieved the high accuracy of 100% in the training data. In the testing data, the overall accuracies of LHNFCSF achieved 100%, which is superior to other methods. Thus, this study suggests that LHNFCSF in the intelligent diagnosis flu system can provide a preliminary result to physicians so that the doctor could quickly and accurately decide whether patient have cold or flu.
AbstractList This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG), neuro-fuzzy classifier with linguistic hedges (NFCLH) and linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF) to develop an intelligent diagnosis flu system. Gaussian membership function is used for fuzzy set descriptions. Leave-one-subject-out (LOSO) cross-validation is used to estimate the performance of three neuro-fuzzy classifiers. The results shows NFCSCG, NFCLF and LHNFCSF achieved the high accuracy of 100% in the training data. In the testing data, the overall accuracies of LHNFCSF achieved 100%, which is superior to other methods. Thus, this study suggests that LHNFCSF in the intelligent diagnosis flu system can provide a preliminary result to physicians so that the doctor could quickly and accurately decide whether patient have cold or flu.
Author Sheng-Ta Hsieh
Chun-Ling Lin
Author_xml – sequence: 1
  givenname: Sheng-Ta
  surname: Hsieh
  fullname: Hsieh, Sheng-Ta
– sequence: 2
  givenname: Chun-Ling
  surname: Lin
  fullname: Lin, Chun-Ling
BookMark eNotjztPwzAYRQ0CCShdWVg8sqTYjp9jaClUVEXiMUdO_LmylDolTpDaX0-kMt3l6FydG3QR2wgI3VEyo5SYx3mxWRQfM0aomOX6DE2N0pRLlRtlFD1H1yxXJqPayCs0TSlUhEklBZH0Gr0VEa9iD00TthB7vAh2G9sUEl42A_48pB52-MkmcLiNuHB234dfwBsYujZbDsfjAc8bO0o9dLfo0tsmwfR_J-h7-fw1f83W7y-rebHOAiO6z0A5CUJUhnvOnOBKsdwbrTx33IoxyHEHntBaCauAV5bWlZdMeucZF7rOJ-jh5N137c8AqS93IdVjgo3QDqmkmgqjhRFkRO9PaACAct-Fne0OpeJsfM3zP1ZMXVw
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CANDAR.2015.38
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467397971
1467397970
EISSN 2379-1896
EndPage 550
ExternalDocumentID 7424773
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-e7d6e55b94f42d547723f987f4d4a5109d4def01c75a7e4ba1cbf626fdf2458c3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399160300090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jul 10 17:51:47 EDT 2025
Wed Aug 27 01:59:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-e7d6e55b94f42d547723f987f4d4a5109d4def01c75a7e4ba1cbf626fdf2458c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1815985950
PQPubID 23500
PageCount 4
ParticipantIDs ieee_primary_7424773
proquest_miscellaneous_1815985950
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle International Symposium on Computing and Networking (Online)
PublicationTitleAbbrev CANDAR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026765061
ssj0003204063
Score 1.5906165
Snippet This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG),...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 547
SubjectTerms Accuracy
Adaptive neuro-fuzzy classifer
Adaptive systems
Algorithms
Artificial intelligence
Artificial neural networks
Classifiers
Conjugate gradients
Diagnosis
Fuzzy logic
Influenza
Leave-one-subject-o
Linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF)
Linguistics
Neuro-fuzzy classifier with linguistic hedges (NFCLH)
Neurofuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG)
Pragmatics
Testing
Training
Title An Intelligent Diagnosis Flu System Based on Adaptive Neuro-Fuzzy Classifer
URI https://ieeexplore.ieee.org/document/7424773
https://www.proquest.com/docview/1815985950
WOSCitedRecordID wos000399160300090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7a4sGTj1asL1bwaNp0s4_kGFuDIpQiCr2FTXYWCpKWNhHsr3d3k9aDXrzlsrDMzs7sZL7vG4TuOJNcEZF5Vprdo0RayVsGHlFcQBDSgGfUDZsQ02k4n0ezFrrfc2EAwIHPYGA_XS9fLfPK_iobmjKOChG0UVsIXnO1dr5DuDBvjYajaaNwQIx78qDRaRz50XAcTyfxq0VzsYGlo7hpKr9CsMsrydH_dnSMej8EPTzbp54T1ILiFB3tJjTg5sJ20Utc4Oe96GaJJzWwbrHByUeFa7Vy_GASmcLLAsdKrmz0w06xw0uq7fYLu6mZFv_SQ-_J49v4yWvGJ3gL4oelB0JxYCyLqKZEMbNPEugoFJoqKs1VjBRVoP1RLpgUQDM5yjNt6hutNKEszIMz1CmWBZwjrDm3_TcOigAFyGSYcTCVkzLlI5OZ7qOutU26qhUy0sYsfXS7M25qvNa2ImQBy2qTmncFi6y0mn_x99JLdGgPqgaOXKFOua7gGh3kn-Vis75xR_8NhmKugw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gZ58tGJ9ruDR1HSzj-RYq8XSWopU6C1ssrNQkFRsI9hf726S1oNevO0lsExmZ3Z2vu8bgBvBldBUJp6TZvcYVU7ylqNHtZAYhCwQCSuGTcjhMJxMotEG3K65MIhYgM-w6ZZFL1_P0tw9ld3ZMo5JGWzCNmeM-iVba-U9VEh726hYmi4OB9Q6qAgqpcaWH9112sOH9ovDc_GmI6QU81R-BeEis3T3_7enA6j_UPTIaJ18DmEDsyPYX81oINWRrUG_nZHeWnZzQR5KaN10TrpvOSn1ysm9TWWazDLS1urdxT9SaHZ43Xy5_CLF3EyHgKnDa_dx3HnyqgEK3pT64cJDqQVynkTMMKq53ScNTBRKwzRT9jBGmmk0fiuVXElkiWqlibEVjtGGMh6mwTFsZbMMT4AYIVwHTqCmyBATFSYCbe2kbQHJVWIaUHO2id9LjYy4MksDrlfGja3fumaEynCWz2N7s-CRE1fzT__-9Ap2n8bPg3jQG_bPYM_9tBJGcg5bi48cL2An_VxM5x-XhRt8A8Yssco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Computing+and+Networking+%28Online%29&rft.atitle=An+Intelligent+Diagnosis+Flu+System+Based+on+Adaptive+Neuro-Fuzzy+Classifer&rft.au=Sheng-Ta+Hsieh&rft.au=Chun-Ling+Lin&rft.date=2015-12-01&rft.pub=IEEE&rft.eissn=2379-1896&rft.spage=547&rft.epage=550&rft_id=info:doi/10.1109%2FCANDAR.2015.38&rft.externalDocID=7424773