Cross-domain sentiment classification using deep learning approach
Deep learning, as a new unsupervised leaning algorithm, has strong capabilities to learn data representations. Previous work has shown that new features learned by deep learning algorithm help to improve the accuracy of cross-domain classification. In this paper, we firstly propose a modified versio...
Saved in:
| Published in: | IEEE ... International Conference on Cloud Computing and Intelligence Systems pp. 60 - 64 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.11.2014
|
| Subjects: | |
| ISBN: | 1479947202, 9781479947201 |
| ISSN: | 2376-5933 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deep learning, as a new unsupervised leaning algorithm, has strong capabilities to learn data representations. Previous work has shown that new features learned by deep learning algorithm help to improve the accuracy of cross-domain classification. In this paper, we firstly propose a modified version of marginalized stacked denoising autoencoders (mSDA). We call it mSDA++ algorithm, which can learn excellent and low-dimensional features for training classifier. In addition, we combine mSDA with EASYADAPT algorithm to further improve the accuracy of cross-domain classification. Then we use SVM, mSDA, mSDA++, and EA+mSDA algorithms to do the cross-domain sentiment classification experiments on Amazon benchmark dataset. The results show that EA+mSDA algorithm attains the best accuracy. Besides, the mSDA++ algorithm can accelerate the subsequent calculation and reduce the data storage space. |
|---|---|
| AbstractList | Deep learning, as a new unsupervised leaning algorithm, has strong capabilities to learn data representations. Previous work has shown that new features learned by deep learning algorithm help to improve the accuracy of cross-domain classification. In this paper, we firstly propose a modified version of marginalized stacked denoising autoencoders (mSDA). We call it mSDA++ algorithm, which can learn excellent and low-dimensional features for training classifier. In addition, we combine mSDA with EASYADAPT algorithm to further improve the accuracy of cross-domain classification. Then we use SVM, mSDA, mSDA++, and EA+mSDA algorithms to do the cross-domain sentiment classification experiments on Amazon benchmark dataset. The results show that EA+mSDA algorithm attains the best accuracy. Besides, the mSDA++ algorithm can accelerate the subsequent calculation and reduce the data storage space. |
| Author | Hong Liu Qi Tan Miao Sun Runwei Ding |
| Author_xml | – sequence: 1 surname: Miao Sun fullname: Miao Sun email: sunmia0502@126.com organization: South China Nomal Univ., Guangzhou, China – sequence: 2 surname: Qi Tan fullname: Qi Tan email: tanqi@scnu.edu.cn organization: South China Nomal Univ., Guangzhou, China – sequence: 3 surname: Runwei Ding fullname: Runwei Ding email: dingrunwei@pkusz.edu.cn organization: Shenzhen Grad. Sch., Peking Univ., Shenzhen, China – sequence: 4 surname: Hong Liu fullname: Hong Liu email: hongliu@pku.edu.cn organization: Peking Univ., Beijing, China |
| BookMark | eNo1j8tOwzAQRY0oEm3pByA2-YEUjx-xvYSIR6VKLIB1NXYmYJQ4URwW_D0gyuZcnc2Vzoot0pCIsUvgWwDurut697wVHNTWgNGGyxO2AmWcU0o6dfovRnCxYEshTVVqJ-U52-T8wTkHVzlhxZLd1tOQc9kMPcZUZEpz7H9QhA5zjm0MOMchFZ85preiIRqLjnBKv4bjOA0Y3i_YWYtdps1x1-z1_u6lfiz3Tw-7-mZfRsHtXAZqbVuFhhqnkLegpSMVvAZB6JA08IDWmkpYr6myHoz13oOSHDRRhXLNrv5-IxEdxin2OH0djv3yG5EYT4Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCIS.2014.7175703 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1479944394 9781479947195 1479947199 9781479944392 |
| EndPage | 64 |
| ExternalDocumentID | 7175703 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i208t-cef8f6cded94a0f1539e4cb512ea9ae510ca887628b5e68b178bbb143015ee6a3 |
| IEDL.DBID | RIE |
| ISBN | 1479947202 9781479947201 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392727800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5933 |
| IngestDate | Wed Aug 27 02:04:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-cef8f6cded94a0f1539e4cb512ea9ae510ca887628b5e68b178bbb143015ee6a3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7175703 |
| PublicationCentury | 2000 |
| PublicationDate | 20141101 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 20141101 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE ... International Conference on Cloud Computing and Intelligence Systems |
| PublicationTitleAbbrev | CCIS |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001969282 |
| Score | 1.5807551 |
| Snippet | Deep learning, as a new unsupervised leaning algorithm, has strong capabilities to learn data representations. Previous work has shown that new features... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 60 |
| SubjectTerms | Classification algorithms Cross-domain Deep learning dimension reduction feature augment ISO standards Noise reduction Text sentiment classification Training |
| Title | Cross-domain sentiment classification using deep learning approach |
| URI | https://ieeexplore.ieee.org/document/7175703 |
| WOSCitedRecordID | wos000392727800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0A8eAJFYzf6cGjhV1ctu3VjUQTQ0j8CDeybaeEgwtB8PfbKQVi4sXb7h7azTTTmWnnvQdw6zAVIk8kL4W1nIS3ubJWcZuVmBsURgd2_o8XMRzK8ViNanC3w8IgYmg-ww49hrt8OzdrOirr-tKDCKPqUPfjb7Ba-_MUlate0IaiPg_e94V6wHEJpTLhK_wtvVN8T-MNZ5qoblE8v1KTV9aJE_xSWgmBZtD83y8eQXuP2GOjXSw6hhpWJ9DcSjaw6MEteCgoKnI7_yxnFSPgUWD3Z4aSaOoaCgvFqBt-yizigkVZiSnbso-34X3w-FY88SijwGe9RK64QSddbixalZWJ81ucwsxoH-mRqLm9U5pS0qYodR9zqVMhtdY-j_KZAmJe3p9Co5pXeAbMpegyZ9Ie0Rb5YcjnrSJGGIIdivwcWmSSyWLDlDGJ1rj4-_MlHJLVN8i-K2islmu8hgPzvZp9LW_C8v4AIWOg5A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmugJFYzf9uDRwi6WbXt1I4GIhEQ03MhuO0s4uBAEf7-dskBMvHjb7mG36WQ6M-289wDuMwyljALFE2ktJ-Ftrq3V3IoEI4PSpJ6d_6Mn-301GulBCR62WBhE9M1nWKdHf5dvZ2ZFR2UNV3oQYdQe7LeEaAZrtNbuREVHuunVoajTg7dcqe6RXFJrIV2NvyF4KsZhcccZBroRx903avMS9eIXv7RWfKhpV_43yWOo7TB7bLCNRidQwvwUKhvRBlb4cBWeYoqL3M4-k2nOCHrk-f2ZoTSa-oa8qRj1w0-YRZyzQlhiwjb84zV4bz8P4w4vhBT4tBmoJTeYqSwyFq0WSZC5TU6jMKmL9Ujk3M4tTaJoW1RpCyOVhlKlaeoyKZcrIEbJ4xmU81mO58CyEDORmbBJxEXuM-T1VhMnDAEPZXQBVVqS8XzNlTEuVuPy79d3cNgZvvbGvW7_5QqOyAJrnN81lJeLFd7AgfleTr8Wt97UP7XEpCs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Cloud+Computing+and+Intelligence+Systems&rft.atitle=Cross-domain+sentiment+classification+using+deep+learning+approach&rft.au=Miao+Sun&rft.au=Qi+Tan&rft.au=Runwei+Ding&rft.au=Hong+Liu&rft.date=2014-11-01&rft.pub=IEEE&rft.isbn=1479947202&rft.issn=2376-5933&rft.spage=60&rft.epage=64&rft_id=info:doi/10.1109%2FCCIS.2014.7175703&rft.externalDocID=7175703 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5933&client=summon |

