VH-DSI: Speeding up Data Visualization via a Heterogeneous Distributed Storage Infrastructure

Visualizing and analyzing large-scale datasets are both critical and challenging, as they require substantial resources for data processing and storage. While the speed of supercomputers continues to set higher standard, the I/O systems have not kept in pace, resulting in a significant performance b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference on Parallel and Distributed Systems s. 658 - 665
Hlavní autoři: Yongqing Zhu, Juniarto, Samsudin, Haixiang Shi, Jun Wang
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.12.2015
Témata:
ISSN:1521-9097
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Visualizing and analyzing large-scale datasets are both critical and challenging, as they require substantial resources for data processing and storage. While the speed of supercomputers continues to set higher standard, the I/O systems have not kept in pace, resulting in a significant performance bottleneck. To alleviate the I/O bottleneck for scientific visualization applications, we propose a Visualization via a Heterogeneous Distributed Storage Infrastructure (VH-DSI) solution to improve I/O speed and accelerate overall visualization performance. VH-DSI replaces the traditional parallel file system with a distributed file system to support visualization applications. A new scheduling algorithm HeterSche is proposed in VH-DSI to assign computing tasks to data nodes with the consideration of cluster heterogeneity and data locality. VH-DSI also includes a design to support POSIX-IO for distributed file system. The performance evaluation has shown that the proposed VH-DSI solution can achieve significant performance improvement for visualization applications. Compared to the traditional visualization, the VH-DSI solution reduces the response time by at least 5 times. The HeterSche scheduling algorithm is capable to speed up visualization compared to other scheduling algorithms especially for large scale datasets.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1521-9097
DOI:10.1109/ICPADS.2015.88