Learning Fine-Grained Image Similarity with Deep Ranking
Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than m...
Uložené v:
| Vydané v: | 2014 IEEE Conference on Computer Vision and Pattern Recognition s. 1386 - 1393 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Konferenčný príspevok.. Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2014
|
| Predmet: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than models based on hand-crafted features. A novel multiscale network structure has been developed to describe the images effectively. An efficient triplet sampling algorithm is also proposed to learn the model with distributed asynchronized stochastic gradient. Extensive experiments show that the proposed algorithm outperforms models based on hand-crafted visual features and deep classification models. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 1063-6919 1063-6919 |
| DOI: | 10.1109/CVPR.2014.180 |