Fault Diagnosis of RC-coupled Amplifier Using Slope Fault Feature and Comparision with Different Neural Networks

This paper describe fault diagnosis of RC-Coupled amplifier using slope fault feature. These slope fault feature technique utilized to construct the fault dictionary for RC-Coupled amplifier. This fault dictionary used to generate different fault diagnosis model for analog circuit using artificial n...

Full description

Saved in:
Bibliographic Details
Published in:2015 Fifth International Conference on Communication Systems and Network Technologies pp. 1163 - 1166
Main Authors: Gupta, Shashank Kumar, Ayub, Shahanaz, Saini, J. P.
Format: Conference Proceeding
Language:English
Published: IEEE 01.04.2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper describe fault diagnosis of RC-Coupled amplifier using slope fault feature. These slope fault feature technique utilized to construct the fault dictionary for RC-Coupled amplifier. This fault dictionary used to generate different fault diagnosis model for analog circuit using artificial neural network technique. For generate the fault model three different type neural networks utilized. These neural networks are radial basis function neural network, perceptron neural network and feed forward back propagation algorithm neural network. In theses network radial basis function neural network shows 100 percentage efficiency, perceptron neural network shows 87.5 percentage efficiency and feed forward back propagation algorithm shows 99.31 percentage efficiency in the training and testing for fault dictionary.
AbstractList This paper describe fault diagnosis of RC-Coupled amplifier using slope fault feature. These slope fault feature technique utilized to construct the fault dictionary for RC-Coupled amplifier. This fault dictionary used to generate different fault diagnosis model for analog circuit using artificial neural network technique. For generate the fault model three different type neural networks utilized. These neural networks are radial basis function neural network, perceptron neural network and feed forward back propagation algorithm neural network. In theses network radial basis function neural network shows 100 percentage efficiency, perceptron neural network shows 87.5 percentage efficiency and feed forward back propagation algorithm shows 99.31 percentage efficiency in the training and testing for fault dictionary.
Author Ayub, Shahanaz
Saini, J. P.
Gupta, Shashank Kumar
Author_xml – sequence: 1
  givenname: Shashank Kumar
  surname: Gupta
  fullname: Gupta, Shashank Kumar
  email: hariomtech25@gmail.com
  organization: Dept. of Electron. & Commun. Eng., Bundelkhand Inst. of Eng. & Technol., Jhansi, India
– sequence: 2
  givenname: Shahanaz
  surname: Ayub
  fullname: Ayub, Shahanaz
  email: shahanaz_ayub@rediffmail.com
  organization: Dept. of Electron. & Commun. Eng., Bundelkhand Inst. of Eng. & Technol., Jhansi, India
– sequence: 3
  givenname: J. P.
  surname: Saini
  fullname: Saini, J. P.
  email: jps_uptu@rediffmail.com
  organization: Dept. of Electron. & Commun. Eng., Bundelkhand Inst. of Eng. & Technol., Jhansi, India
BookMark eNotzLtOwzAYQGEjwQClGxuLXyDBl_g2VoEAUlUkGubKSX4Xi8SOnEQVb0-lMn3TOXfoOsQACD1QklNKzFO539U5I1TkSlyhtVGaFsoYqow0t2is7NLP-NnbY4iTn3B0-LPM2riMPXR4M4y9dx4S_pp8OOJ9H0fAl6YCOy8JsA0dLuMw2uQnHwM--fn7PHQOEoQZ72BJtj8zn2L6me7RjbP9BOt_V6iuXuryLdt-vL6Xm23mGdFzZhsoREGJ5GA4s6LQspESmkaQDqzhDbGat9TJrmu5bpUQnBGQXIEU0jm-Qo-XrQeAw5j8YNPvQTFNKGH8D3V0VrU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSNT.2015.75
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479917969
1479917974
1479917966
9781479917976
EndPage 1166
ExternalDocumentID 7280102
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i208t-abe4541063e932a5486b66ebb50dea93b0a83c1f6ddc38c755320e637e656ff3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380431700234&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:36:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-abe4541063e932a5486b66ebb50dea93b0a83c1f6ddc38c755320e637e656ff3
PageCount 4
ParticipantIDs ieee_primary_7280102
PublicationCentury 2000
PublicationDate 20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 20150401
  day: 01
PublicationDecade 2010
PublicationTitle 2015 Fifth International Conference on Communication Systems and Network Technologies
PublicationTitleAbbrev CSNT
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5652947
Snippet This paper describe fault diagnosis of RC-Coupled amplifier using slope fault feature. These slope fault feature technique utilized to construct the fault...
SourceID ieee
SourceType Publisher
StartPage 1163
SubjectTerms Analog circuits
Circuit faults
Dictionaries
Fault diagnosis
feed forward backpropagation algorithm
Feeds
Neural networks
perceptron neural network
radial basis function neural network
RC-Coupled amplifier
Resistance
slope fault feature
voltage relation function
Title Fault Diagnosis of RC-coupled Amplifier Using Slope Fault Feature and Comparision with Different Neural Networks
URI https://ieeexplore.ieee.org/document/7280102
WOSCitedRecordID wos000380431700234&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwEBZp6NCpLUnpGw0d68SKbMkei9vQKYQmQ7YgyScIGNskdn5_dXJwO3SpFgmBJLgb7qHv7iPkRVhpwhmIAKzFptoMAq1xJRSzkXIG10SebEIuFslmky4H5LWvhQEADz6DCS79X35emRZTZVOkUmLYOfJMStHVavVY9nSarRZrxGrFEwQN_uJK8aZifvm_R67I-Kfmji57a3JNBlCOSD1XbdHQ9w4PtzvQytKvLDBVWxeQ0zeEg1tn2Kj_-aeroqqBdmfQt2v3QFWZ0-xENuh0QDHx6i7saFEais05VOEmjwY_jMl6_rHOPoMTR0Kwm4VJEygNURy5uI6D88SUiz-EFgK0jsMcVMp1qBJumBV5bnhiZIxEECC4BOfIWctvyLCsSrgl1EgDnBmeJsxEbqShAuBcuwuZYkzfkREKa1t3XTC2Jznd_739QC5QFR3G5ZEMm30LT-TcHJvdYf_sVfcNcGieyw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9DBT2pbOK3OXi0W7O0aXuU6pg4y3A97DaS9AUGpS1b699vXjumBy_mkhBIAu8d3kd-7_0IeRQm0O4YhAPGYFNtBo5SuBKSGU9ag6u9lmwiSJJwuYzmPfK0r4UBgBZ8BkNctn_5WakbTJWNkEqJYefIQ9_zxm5XrbVHs0ejeJGkiNbyhwgb_MWW0hqLyen_njkjg5-qOzrf25Nz0oOiT6qJbPKavnSIuPWWloZ-xo4umyqHjD4jINxY00bbv3-6yMsKaHcGvbtmA1QWGY13dINWCxRTr_bCjhilptieQ-Z2avHg2wFJJ69pPHV2LAnOeuyGtSMVeL5nIzsO1heTNgIRSghQynczkBFXrgy5ZkZkmeahDnykggDBA7CunDH8ghwUZQGXhOpAA2eaRyHTnh2RKwE4V_ZCJhlTV6SPwlpVXR-M1U5O139vP5DjafoxW83ekvcbcoJq6RAvt-Sg3jRwR470V73ebu5bNX4D3kGiEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+Fifth+International+Conference+on+Communication+Systems+and+Network+Technologies&rft.atitle=Fault+Diagnosis+of+RC-coupled+Amplifier+Using+Slope+Fault+Feature+and+Comparision+with+Different+Neural+Networks&rft.au=Gupta%2C+Shashank+Kumar&rft.au=Ayub%2C+Shahanaz&rft.au=Saini%2C+J.+P.&rft.date=2015-04-01&rft.pub=IEEE&rft.spage=1163&rft.epage=1166&rft_id=info:doi/10.1109%2FCSNT.2015.75&rft.externalDocID=7280102