Fault Diagnosis of RC-coupled Amplifier Using Slope Fault Feature and Comparision with Different Neural Networks

This paper describe fault diagnosis of RC-Coupled amplifier using slope fault feature. These slope fault feature technique utilized to construct the fault dictionary for RC-Coupled amplifier. This fault dictionary used to generate different fault diagnosis model for analog circuit using artificial n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 Fifth International Conference on Communication Systems and Network Technologies s. 1163 - 1166
Hlavní autoři: Gupta, Shashank Kumar, Ayub, Shahanaz, Saini, J. P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper describe fault diagnosis of RC-Coupled amplifier using slope fault feature. These slope fault feature technique utilized to construct the fault dictionary for RC-Coupled amplifier. This fault dictionary used to generate different fault diagnosis model for analog circuit using artificial neural network technique. For generate the fault model three different type neural networks utilized. These neural networks are radial basis function neural network, perceptron neural network and feed forward back propagation algorithm neural network. In theses network radial basis function neural network shows 100 percentage efficiency, perceptron neural network shows 87.5 percentage efficiency and feed forward back propagation algorithm shows 99.31 percentage efficiency in the training and testing for fault dictionary.
DOI:10.1109/CSNT.2015.75