Bayesian quickest detection with unknown post-change parameter
In this paper, Bayesian quickest change-point detection problem with incomplete post-change information is considered. In particular, the observer knows that the post-change distribution belongs to a parametric distribution family, but he does not know the true value of the post-change parameter. Tw...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 4169 - 4173 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.03.2016
|
| Schlagworte: | |
| ISSN: | 2379-190X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, Bayesian quickest change-point detection problem with incomplete post-change information is considered. In particular, the observer knows that the post-change distribution belongs to a parametric distribution family, but he does not know the true value of the post-change parameter. Two problem formulations are considered in this paper. In the first formulation, we assume no additional prior information about the post-change parameter. In this case, the observer aims to design a detection algorithm to minimize the average (over the change-point) detection delay for all possible post-change parameters simultaneously subject to a worst case false alarm constraint. In the second formulation, we assume that there is a prior distribution on the possible value of the unknown parameter. For this case, we propose another formulation that minimizes the average (over both the change-point and the post-change parameter) detection delay subject to an average false alarm constraint. We propose a noval algorithm, which is termed as M-Shiryaev procedure, and show that the proposed algorithm is first order asymptotically optimal for both formulations considered in this paper. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP.2016.7472462 |