Maximum entropy regularized group collaborative representation for face recognition

While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 IEEE International Conference on Image Processing (ICIP) S. 291 - 295
Hauptverfasser: Zhong Zhao, Guocan Feng, Lifang Zhang, Jiehua Zhu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2015
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR) algorithm for face recognition. MECR takes the group structure of the face data into consideration under the framework of collaborative representation, and uses maximum entropy principle to obtain discriminative coding for classification. Experiments show that MECR outperforms several state-of-the-art coding methods and dictionary learning methods on some benchmark face databases.
DOI:10.1109/ICIP.2015.7350806