Threshold segmentation algorithm for infrared small target in agriculture and forestry fire

A novel image segmentation for infrared small target of agriculture and forestry fire is proposed in this paper. Usually, Maximum Variance Image Segmentation method (Otsu) is a popular non-parametric method in image segmentation. However, it needs a lot computation and has poor real-time quality. Th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chinese Control Conference s. 4020 - 4025
Hlavní autori: Wang, Yuchao, Fu, Huixuan, Lin, Dehua
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: TCCT 01.07.2016
Predmet:
ISSN:1934-1768
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A novel image segmentation for infrared small target of agriculture and forestry fire is proposed in this paper. Usually, Maximum Variance Image Segmentation method (Otsu) is a popular non-parametric method in image segmentation. However, it needs a lot computation and has poor real-time quality. Thus it is hard to be wide applied in many situations. To over come this issue, a constructive approach to obtain optimal threshold of between-class variance as fitness function for Otsu by particle swarm optimization (PSO), reduce the amount of computation and improve real-time performance. The performance of the proposed method is evaluated through infrared small target of agriculture and forestry fire. The experimental results demonstrate the effectiveness of the proposed method.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1934-1768
DOI:10.1109/ChiCC.2016.7553981