Simultaneous video defogging and stereo reconstruction

We present a method to jointly estimate scene depth and recover the clear latent image from a foggy video sequence. In our formulation, the depth cues from stereo matching and fog information reinforce each other, and produce superior results than conventional stereo or defogging algorithms. We firs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 4988 - 4997
Hlavní autoři: Li, Zhuwen, Tan, Ping, Tan, Robby T., Zou, Danping, Zhou, Steven Zhiying, Cheong, Loong-Fah
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a method to jointly estimate scene depth and recover the clear latent image from a foggy video sequence. In our formulation, the depth cues from stereo matching and fog information reinforce each other, and produce superior results than conventional stereo or defogging algorithms. We first improve the photo-consistency term to explicitly model the appearance change due to the scattering effects. The prior matting Laplacian constraint on fog transmission imposes a detail-preserving smoothness constraint on the scene depth. We further enforce the ordering consistency between scene depth and fog transmission at neighboring points. These novel constraints are formulated together in an MRF framework, which is optimized iteratively by introducing auxiliary variables. The experiment results on real videos demonstrate the strength of our method.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2015.7299133