Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming
Streaming data processing has been gaining attention due to its application into a wide range of scenarios. To serve the booming demands of streaming data processing, many computation engines have been developed. However, there is still a lack of real-world benchmarks that would be helpful when choo...
Gespeichert in:
| Veröffentlicht in: | 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) S. 1789 - 1792 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2016
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Streaming data processing has been gaining attention due to its application into a wide range of scenarios. To serve the booming demands of streaming data processing, many computation engines have been developed. However, there is still a lack of real-world benchmarks that would be helpful when choosing the most appropriate platform for serving real-time streaming needs. In order to address this problem, we developed a streaming benchmark for three representative computation engines: Flink, Storm and Spark Streaming. Instead of testing speed-of-light event processing, we construct a full data pipeline using Kafka and Redis in order to more closely mimic the real-world production scenarios. Based on our experiments, we provide a performance comparison of the three data engines in terms of 99th percentile latency and throughput for various configurations. |
|---|---|
| DOI: | 10.1109/IPDPSW.2016.138 |