Adaptive projected subgradient method and set theoretic adaptive filtering with multiple convex constraints

This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The propose...

Full description

Saved in:
Bibliographic Details
Published in:2004 38th Asilomar Conference on Signals, Systems and Computers Vol. 1; pp. 960 - 964 Vol.1
Main Authors: Slavakis, K., Yamada, I., Ogura, N., Yukawa, M.
Format: Conference Proceeding
Language:English
Published: Piscataway NJ IEEE 2004
Subjects:
ISBN:0780386221, 9780780386228
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The proposed method provides with a strongly convergent, asymptotically optimal point sequence as well as with a characterization of the limiting point. As a side effect, the method allows the asymptotic minimization over the nonempty intersection of a finite number of closed convex sets. Thus, new directions for set theoretic adaptive filtering algorithms are revealed whenever the estimandum (system to be identified) is known to satisfy a number of convex constraints. This leads to a unification of a wide range of set theoretic adaptive filtering schemes such as NLMS, projected or constrained NLMS, APA, adaptive parallel subgradient projection algorithm, adaptive parallel min-max projection algorithm as well as their embedded constraint versions. Numerical results demonstrate the effectiveness of the proposed method to the problem of stereophonic acoustic echo cancellation.
ISBN:0780386221
9780780386228
DOI:10.1109/ACSSC.2004.1399281