Adaptive projected subgradient method and set theoretic adaptive filtering with multiple convex constraints
This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The propose...
Gespeichert in:
| Veröffentlicht in: | 2004 38th Asilomar Conference on Signals, Systems and Computers Jg. 1; S. 960 - 964 Vol.1 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway NJ
IEEE
2004
|
| Schlagworte: | |
| ISBN: | 0780386221, 9780780386228 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The proposed method provides with a strongly convergent, asymptotically optimal point sequence as well as with a characterization of the limiting point. As a side effect, the method allows the asymptotic minimization over the nonempty intersection of a finite number of closed convex sets. Thus, new directions for set theoretic adaptive filtering algorithms are revealed whenever the estimandum (system to be identified) is known to satisfy a number of convex constraints. This leads to a unification of a wide range of set theoretic adaptive filtering schemes such as NLMS, projected or constrained NLMS, APA, adaptive parallel subgradient projection algorithm, adaptive parallel min-max projection algorithm as well as their embedded constraint versions. Numerical results demonstrate the effectiveness of the proposed method to the problem of stereophonic acoustic echo cancellation. |
|---|---|
| ISBN: | 0780386221 9780780386228 |
| DOI: | 10.1109/ACSSC.2004.1399281 |

