Adaptive projected subgradient method and set theoretic adaptive filtering with multiple convex constraints

This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The propose...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2004 38th Asilomar Conference on Signals, Systems and Computers Ročník 1; s. 960 - 964 Vol.1
Hlavní autori: Slavakis, K., Yamada, I., Ogura, N., Yukawa, M.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Piscataway NJ IEEE 2004
Predmet:
ISBN:0780386221, 9780780386228
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The proposed method provides with a strongly convergent, asymptotically optimal point sequence as well as with a characterization of the limiting point. As a side effect, the method allows the asymptotic minimization over the nonempty intersection of a finite number of closed convex sets. Thus, new directions for set theoretic adaptive filtering algorithms are revealed whenever the estimandum (system to be identified) is known to satisfy a number of convex constraints. This leads to a unification of a wide range of set theoretic adaptive filtering schemes such as NLMS, projected or constrained NLMS, APA, adaptive parallel subgradient projection algorithm, adaptive parallel min-max projection algorithm as well as their embedded constraint versions. Numerical results demonstrate the effectiveness of the proposed method to the problem of stereophonic acoustic echo cancellation.
AbstractList This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The proposed method provides with a strongly convergent, asymptotically optimal point sequence as well as with a characterization of the limiting point. As a side effect, the method allows the asymptotic minimization over the nonempty intersection of a finite number of closed convex sets. Thus, new directions for set theoretic adaptive filtering algorithms are revealed whenever the estimandum (system to be identified) is known to satisfy a number of convex constraints. This leads to a unification of a wide range of set theoretic adaptive filtering schemes such as NLMS, projected or constrained NLMS, APA, adaptive parallel subgradient projection algorithm, adaptive parallel min-max projection algorithm as well as their embedded constraint versions. Numerical results demonstrate the effectiveness of the proposed method to the problem of stereophonic acoustic echo cancellation.
Author Yamada, I.
Ogura, N.
Yukawa, M.
Slavakis, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Slavakis
  fullname: Slavakis, K.
  organization: Dept. of Commun. & Integrated Syst., Tokyo Inst. of Technol., Japan
– sequence: 2
  givenname: I.
  surname: Yamada
  fullname: Yamada, I.
  organization: Dept. of Commun. & Integrated Syst., Tokyo Inst. of Technol., Japan
– sequence: 3
  givenname: N.
  surname: Ogura
  fullname: Ogura, N.
– sequence: 4
  givenname: M.
  surname: Yukawa
  fullname: Yukawa, M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17612763$$DView record in Pascal Francis
BookMark eNpFUMtOAjEUbaImCvIDuunGJdjHTKddEuIrIXGBrsmd9g4Uh86kLah_LwSNZ3OS81qcATkPXUBCbjibcM7M_XS2WMwmgrFiwqUxQvMzMmCVZlIrIfglGaW0YQcUZSG4uSIfUwd99nukfew2aDM6mnb1KoLzGDLdYl53jkI4yJhpXmMXMXtL4a_X-DZj9GFFP31e0-2uzb5vkdou7PHrSClH8CGna3LRQJtw9MtD8v748DZ7Hs9fn15m0_nYC1bmMTqFZQ0gnKmxbGylQWijWaEqqLljutFWVqVDU6HkyISVjdLGqkYhFyDlkNyddntIFtomQrA-LfvotxC_l7xSXFTqmLs95Twi_tun3-QPk6VoYA
ContentType Conference Proceeding
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID 6IE
6IH
CBEJK
RIE
RIO
IQODW
DOI 10.1109/ACSSC.2004.1399281
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Pascal-Francis
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 964 Vol.1
ExternalDocumentID 17612763
1399281
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
RIO
IQODW
ID FETCH-LOGICAL-i205t-ed6e5baa2d9be5fc78a28980467ab1d08f8c375de97e31e02c3f689c6f6e12a33
IEDL.DBID RIE
ISBN 0780386221
9780780386228
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000227655300183&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Sun Oct 22 16:06:36 EDT 2023
Tue Aug 26 18:30:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords Performance evaluation
Parallel algorithm
Convex set
Adaptive algorithm
Maximin problem
Stereophony
Algorithmics
Adaptive filtering
Continuous function
Mapping
Acoustic signal processing
Adaptive method
Minimax method
Unification
Numerical simulation
Set theory
Hilbert space
Convex function
Asymptotic approximation
Least mean squares methods
Fixed point
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName Conference record of the Thirty-eighth Asilomar Conference on Signals, Systems & Computers (November 7-10, 2004, Pacific Grove, California)
MergedId FETCHMERGED-LOGICAL-i205t-ed6e5baa2d9be5fc78a28980467ab1d08f8c375de97e31e02c3f689c6f6e12a33
ParticipantIDs ieee_primary_1399281
pascalfrancis_primary_17612763
PublicationCentury 2000
PublicationDate 20040000
2004
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 20040000
PublicationDecade 2000
PublicationPlace Piscataway NJ
PublicationPlace_xml – name: Piscataway NJ
PublicationTitle 2004 38th Asilomar Conference on Signals, Systems and Computers
PublicationTitleAbbrev ACSSC
PublicationYear 2004
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454219
Score 1.5597886
Snippet This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of...
SourceID pascalfrancis
ieee
SourceType Index Database
Publisher
StartPage 960
SubjectTerms Adaptive filters
Applied sciences
Constraint theory
Convergence
Detection, estimation, filtering, equalization, prediction
Echo cancellers
Exact sciences and technology
Filtering algorithms
Hilbert space
Information, signal and communications theory
Miscellaneous
Projection algorithms
Resonance light scattering
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
Telecommunications and information theory
Working environment noise
Title Adaptive projected subgradient method and set theoretic adaptive filtering with multiple convex constraints
URI https://ieeexplore.ieee.org/document/1399281
Volume 1
WOSCitedRecordID wos000227655300183&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA9zeNCLj02cj5GDR7ulqW2S4xiKBxmDqew20uSLDKEbayf--SbpYxO8eOqLhPC1zff8_T6E7jQ31m6LaSAeFA-sxheBtULSQBEiSUpoSjw7__sLm0z4fC6mLXTfYGEAwBefwcCd-ly-XqmtC5UNQ8ei6nDWB4wlJVariac4Kjn793nPnJPIGuo0rAh26mteg2aIGI7Gs9nYu4eDataqvYorjpS5lY8pG1vsaZunk_-t8xR1d7A9PG0U0hlqQXaOjvcYBzvoc6Tl2u1wuArBgMb5Nv3Y-MqvApcNpbHM7G0ocANzxLIeZ5Yuv24nwy6Ei-uCROzL17_dIfdtJ4q8i96eHl_Hz0HVbyFYUhIXAegE4lRKqkUKsVGMS-uOcetBM5mGmtjXqiIWaxAMohAIVZFJuFCJSSCkMoouUDtbZXCJMAmNtUuoNi7PF7FICmmEdQ1VqBKuIemhjhPbYl1SaiwqifVQ_5fwd8-ZtcTsVnj197hrdFRW1LjQyA1qF5st3KJD9VUs803ffyg_ms69Ag
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4ImqgvXsCIF-yDjw66zW3tIyEajEhIQMMb6dpTQ0wGYcP48227C5j44tNuadOcbT3X73wI3UmqtN0WeA57ENTRGp852gqJHUEIJzHxYmK7878Po9GIzmZsXEP3FRYGAGzxGXTMqc3ly6XYmFBZ1zVdVA3Oes8wZxVorSqiYprJ6f_P-uaU-NpU99yixU55TUvYDGHdXn8y6VsHsVPMWxCsmPJInmoJqZzaYkffPB3_b6UnqLkF7uFxpZJOUQ2SM3S003OwgT57kq_MHoeLIAxInG7ij7Wt_cpwTimNeaJvQ4YroCPm5Ti1MBl2PRk2QVxcliRiW8D-bQ6pJZ7I0iZ6e3qc9gdOwbjgLDwSZA7IEIKYc0-yGAIlIsq1Q0a1Dx3x2JVEv1jhR4EEFoHvAvGEr0LKRKhCcD3u--eoniwTuECYuEpbJp5UJtPnRz5nXDHtHApXhFRC2EINI7b5Km-qMS8k1kLtX8LfPo-0LaY3w8u_x92ig8H0dTgfPo9ertBhXl9jAiXXqJ6tN3CD9sVXtkjXbfvR_ACdzsBL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2004+38th+Asilomar+Conference+on+Signals%2C+Systems+and+Computers&rft.atitle=Adaptive+projected+subgradient+method+and+set+theoretic+adaptive+filtering+with+multiple+convex+constraints&rft.au=Slavakis%2C+K.&rft.au=Yamada%2C+I.&rft.au=Ogura%2C+N.&rft.au=Yukawa%2C+M.&rft.date=2004-01-01&rft.pub=IEEE&rft.isbn=9780780386228&rft.volume=1&rft.spage=960&rft.epage=964+Vol.1&rft_id=info:doi/10.1109%2FACSSC.2004.1399281&rft.externalDocID=1399281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780386228/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780386228/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780386228/sc.gif&client=summon&freeimage=true