Co-Salient Object Detection with Uncertainty-Aware Group Exchange-Masking

The traditional definition of co-salient object detection (CoSOD) task is to segment the common salient objects in a group of relevant images. Existing CoSOD models by-default adopt the group consensus assumption. This brings about model robustness defect under the condition of irrelevant images in...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 19639 - 19648
Main Authors: Wu, Yang, Song, Huihui, Liu, Bo, Zhang, Kaihua, Liu, Dong
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2023
Subjects:
ISSN:1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The traditional definition of co-salient object detection (CoSOD) task is to segment the common salient objects in a group of relevant images. Existing CoSOD models by-default adopt the group consensus assumption. This brings about model robustness defect under the condition of irrelevant images in the testing image group, which hinders the use of CoSOD models in real-world applications. To address this issue, this paper presents a group exchange-masking (GEM) strategy for robust CoSOD model learning. With two group of image containing different types of salient object as input, the GEM first selects a set of images from each group by the proposed learning based strategy, then these images are exchanged. The proposed feature extraction module considers both the uncertainty caused by the irrelevant images and group consensus in the remaining relevant images. We design a latent variable generator branch which is made of conditional variational autoencoder to generate uncertainly-based global stochastic features. A CoSOD transformer branch is devised to capture the correlation-based local features that contain the group consistency information. At last, the output of two branches are concatenated and fed into a transformer-based decoder, producing robust co-saliency prediction. Extensive evaluations on co-saliency detection with and without irrelevant images demonstrate the superiority of our method over a variety of state-of-the-art methods.
AbstractList The traditional definition of co-salient object detection (CoSOD) task is to segment the common salient objects in a group of relevant images. Existing CoSOD models by-default adopt the group consensus assumption. This brings about model robustness defect under the condition of irrelevant images in the testing image group, which hinders the use of CoSOD models in real-world applications. To address this issue, this paper presents a group exchange-masking (GEM) strategy for robust CoSOD model learning. With two group of image containing different types of salient object as input, the GEM first selects a set of images from each group by the proposed learning based strategy, then these images are exchanged. The proposed feature extraction module considers both the uncertainty caused by the irrelevant images and group consensus in the remaining relevant images. We design a latent variable generator branch which is made of conditional variational autoencoder to generate uncertainly-based global stochastic features. A CoSOD transformer branch is devised to capture the correlation-based local features that contain the group consistency information. At last, the output of two branches are concatenated and fed into a transformer-based decoder, producing robust co-saliency prediction. Extensive evaluations on co-saliency detection with and without irrelevant images demonstrate the superiority of our method over a variety of state-of-the-art methods.
Author Zhang, Kaihua
Wu, Yang
Liu, Bo
Song, Huihui
Liu, Dong
Author_xml – sequence: 1
  givenname: Yang
  surname: Wu
  fullname: Wu, Yang
  organization: Nanjing University of Information Science and Technology,B-DAT and CICAEET,Nanjing,China
– sequence: 2
  givenname: Huihui
  surname: Song
  fullname: Song, Huihui
  email: songhuihui@nuist.edu.cn
  organization: Nanjing University of Information Science and Technology,B-DAT and CICAEET,Nanjing,China
– sequence: 3
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Walmart Global Tech,Sunnyvale,CA,USA,94086
– sequence: 4
  givenname: Kaihua
  surname: Zhang
  fullname: Zhang, Kaihua
  organization: Nanjing University of Information Science and Technology,B-DAT and CICAEET,Nanjing,China
– sequence: 5
  givenname: Dong
  surname: Liu
  fullname: Liu, Dong
  organization: Netflix Inc,Los Gatos,CA,USA,95032
BookMark eNotzN1OwjAYANBqNBFxb8DFXqD4td36c0kmIgkGo-It6bqvUMSObDXI20uiV-fu3JKr2EYkZMRgzBiY--rj5bXkipsxBy7GwLRmFyQzymhRggDGjb4kAwZSUGmYuSFZ3-8AQHDGpNEDMq9a-mb3AWPKl_UOXcofMJ0JbcyPIW3zVXTYJRtiOtHJ0XaYz7r2-5BPf9zWxg3SZ9t_hri5I9fe7nvM_h2S1eP0vXqii-VsXk0WNHAoEvVoi9LWWnlX1FBIaRw2NehGOqGtYlZBU3jtGmFKXzquGmaNseiU8txKL4Zk9PcGRFwfuvBlu9OawXnXhRC_tgJQ2Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.01881
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 19648
ExternalDocumentID 10204843
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 62276141,61872189
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0100400
  funderid: 10.13039/501100012166
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-fea45ab87fc4b04669cedb08d6c38a71a70d4f8cd395f5c27d1a99aec77f2a6f3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062531303090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:56:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-fea45ab87fc4b04669cedb08d6c38a71a70d4f8cd395f5c27d1a99aec77f2a6f3
PageCount 10
ParticipantIDs ieee_primary_10204843
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.3812983
Snippet The traditional definition of co-salient object detection (CoSOD) task is to segment the common salient objects in a group of relevant images. Existing CoSOD...
SourceID ieee
SourceType Publisher
StartPage 19639
SubjectTerms Generators
Object detection
Reliability engineering
Robustness
Self-supervised or unsupervised representation learning
Stochastic processes
Transformers
Uncertainty
Title Co-Salient Object Detection with Uncertainty-Aware Group Exchange-Masking
URI https://ieeexplore.ieee.org/document/10204843
WOSCitedRecordID wos001062531303090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28eCpPmp8h4NX6j5gGY6mttFEa6PW9NawPJJets126-PfC-xavXjwRggBMmQyMx_zzSB0mScqstQAAWE1oZZ6oIlJApQx5-FTsDwQhe_5aATTqRg3ZPXAhTHGhOQz0_PD8JevF2rtoTKn4b7MLE1bqMV5VpO1NoBK6kKZTEBDj4sjcdV_HT-xxHmPPd8jvBfF4KtX_2qiEmzIsPPP03dR94eNh8cbO7OHtkyxjzqN-4gb5VwdoLv-gjw7t9rtgh9zj6_gG1OFVKsCe7wVT9zCkAFQfZLrd1kaHKAnPPio-b_kQa48dN5Fk-HgpX9Lmk4JZO7uVBFrJGUyB24VzV3EmwlldB6BzlQKkseSR5paUDoVzDKVcB1LIaRRnNtEZjY9RO1iUZgjhK2SCrIcTEwVpSqWIDQDSaVNmeaJPUZdL5rZsi6GMfuWyskf86dox0u_zq46Q-2qXJtztK3eqvmqvAhP-AWa-J3w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT0IxEJ4omugJF4y7PXgtvqV9bY8GMRABiYLhRvq6JFzAwMPl39uWJ3rx4K1pmrbpZDIzX-ebAbjOExVZYjjmwmpMLPFAE5WYE0qdh0-4ZYEo3GG9Hh-NRL8kqwcujDEmJJ-Zuh-Gv3w9U0sPlTkN92VmSboJW5SQJFrRtdaQSuqCmUzwkiAXR-Km8dJ_oonzH-u-S3g9irmvX_2rjUqwIvfVf56_B7UfPh7qry3NPmyY6QFUSwcSleq5OIR2Y4afnWPtdkGPuUdY0J0pQrLVFHnEFQ3dwpADUHzi23c5NyiAT6j5sWIA465cePC8BsP75qDRwmWvBDxxdyqwNZJQmXNmFcldzJsJZXQecZ2plEsWSxZpYrnSqaCWqoTpWAohjWLMJjKz6RFUprOpOQZklVQ8y7mJiSJExZILTbkk0qZUs8SeQM0_zfh1VQ5j_P0qp3_MX8FOa9DtjDvt3sMZ7HpJrHKtzqFSzJfmArbVWzFZzC-DOL8AAJShNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Co-Salient+Object+Detection+with+Uncertainty-Aware+Group+Exchange-Masking&rft.au=Wu%2C+Yang&rft.au=Song%2C+Huihui&rft.au=Liu%2C+Bo&rft.au=Zhang%2C+Kaihua&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=19639&rft.epage=19648&rft_id=info:doi/10.1109%2FCVPR52729.2023.01881&rft.externalDocID=10204843