Variational Bayesian Autoencoder for Channel Compression and Feedback in Massive MIMO Systems
In this paper, we propose a Variational Bayesian Autoencoder (VBA)-based channel state information (CSI) compression and feedback scheme for massive multiple-input multiple-output (MIMO) systems. The proposed scheme incorporates the model-assisted knowledge of low-dimensional feedback features and t...
Gespeichert in:
| Veröffentlicht in: | IEEE International Conference on Communications (2003) S. 6349 - 6354 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
28.05.2023
|
| Schlagworte: | |
| ISSN: | 1938-1883 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we propose a Variational Bayesian Autoencoder (VBA)-based channel state information (CSI) compression and feedback scheme for massive multiple-input multiple-output (MIMO) systems. The proposed scheme incorporates the model-assisted knowledge of low-dimensional feedback features and the sparsity of channel to achieve enhanced compression efficiency. We also design a CsiVBA architecture that outputs distributions of the feedback features and the channel at the encoder and decoder, respectively, which facilitates a Bayesian training formulation exploiting the underlying channel sparsity. In addition, we also propose a low-complexity training scheme for new networks of different bit rates, significantly reducing the retraining cost for new compression requirements. Simulation results show that the proposed scheme achieves better rate-distortion trade-offs than the state-of-the-art solutions. |
|---|---|
| ISSN: | 1938-1883 |
| DOI: | 10.1109/ICC45041.2023.10278811 |