Variational Bayesian Autoencoder for Channel Compression and Feedback in Massive MIMO Systems
In this paper, we propose a Variational Bayesian Autoencoder (VBA)-based channel state information (CSI) compression and feedback scheme for massive multiple-input multiple-output (MIMO) systems. The proposed scheme incorporates the model-assisted knowledge of low-dimensional feedback features and t...
Uložené v:
| Vydané v: | IEEE International Conference on Communications (2003) s. 6349 - 6354 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
28.05.2023
|
| Predmet: | |
| ISSN: | 1938-1883 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we propose a Variational Bayesian Autoencoder (VBA)-based channel state information (CSI) compression and feedback scheme for massive multiple-input multiple-output (MIMO) systems. The proposed scheme incorporates the model-assisted knowledge of low-dimensional feedback features and the sparsity of channel to achieve enhanced compression efficiency. We also design a CsiVBA architecture that outputs distributions of the feedback features and the channel at the encoder and decoder, respectively, which facilitates a Bayesian training formulation exploiting the underlying channel sparsity. In addition, we also propose a low-complexity training scheme for new networks of different bit rates, significantly reducing the retraining cost for new compression requirements. Simulation results show that the proposed scheme achieves better rate-distortion trade-offs than the state-of-the-art solutions. |
|---|---|
| ISSN: | 1938-1883 |
| DOI: | 10.1109/ICC45041.2023.10278811 |