Optimization-Based VINS: Consistency, Marginalization, and FEJ

In this work, we present a comprehensive analysis of the application of the First-estimates Jacobian (FEJ) design methodology in nonlinear optimization-based Visual-Inertial Navigation Systems (VINS). The FEJ approach fixes system linearization points to preserve proper observability properties of V...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems s. 1517 - 1524
Hlavní autori: Chen, Chuchu, Geneva, Patrick, Peng, Yuxiang, Lee, Woosik, Huang, Guoquan
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2023
Predmet:
ISSN:2153-0866
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work, we present a comprehensive analysis of the application of the First-estimates Jacobian (FEJ) design methodology in nonlinear optimization-based Visual-Inertial Navigation Systems (VINS). The FEJ approach fixes system linearization points to preserve proper observability properties of VINS and has been shown to significantly improve the estimation performance of state-of-the-art filtering-based methods. However, its direct application to optimization-based estimators holds challenges and pitfalls, which we addressed in this paper. Specifically, we carefully examine the observability and its relation to inconsistency and FEJ, based on this, we explain how to properly apply and implement FEJ within four marginalization archetypes commonly used in non-linear optimizationbased frameworks. FEJ's effectiveness and applications to VINS are investigated and demonstrate significant performance improvements. Additionally, we offer a detailed discussion of results and guidelines on how to properly implement FEJ in optimization-based estimators.
AbstractList In this work, we present a comprehensive analysis of the application of the First-estimates Jacobian (FEJ) design methodology in nonlinear optimization-based Visual-Inertial Navigation Systems (VINS). The FEJ approach fixes system linearization points to preserve proper observability properties of VINS and has been shown to significantly improve the estimation performance of state-of-the-art filtering-based methods. However, its direct application to optimization-based estimators holds challenges and pitfalls, which we addressed in this paper. Specifically, we carefully examine the observability and its relation to inconsistency and FEJ, based on this, we explain how to properly apply and implement FEJ within four marginalization archetypes commonly used in non-linear optimizationbased frameworks. FEJ's effectiveness and applications to VINS are investigated and demonstrate significant performance improvements. Additionally, we offer a detailed discussion of results and guidelines on how to properly implement FEJ in optimization-based estimators.
Author Lee, Woosik
Chen, Chuchu
Geneva, Patrick
Peng, Yuxiang
Huang, Guoquan
Author_xml – sequence: 1
  givenname: Chuchu
  surname: Chen
  fullname: Chen, Chuchu
  email: ccchu@udel.edu
  organization: University of Delaware,Robot Perception and Navigation Group (RPNG),Newark,DE,USA,19716
– sequence: 2
  givenname: Patrick
  surname: Geneva
  fullname: Geneva, Patrick
  email: pgeneva@udel.edu
  organization: University of Delaware,Robot Perception and Navigation Group (RPNG),Newark,DE,USA,19716
– sequence: 3
  givenname: Yuxiang
  surname: Peng
  fullname: Peng, Yuxiang
  email: yxpeng@udel.edu
  organization: University of Delaware,Robot Perception and Navigation Group (RPNG),Newark,DE,USA,19716
– sequence: 4
  givenname: Woosik
  surname: Lee
  fullname: Lee, Woosik
  email: woosik@udel.edu
  organization: University of Delaware,Robot Perception and Navigation Group (RPNG),Newark,DE,USA,19716
– sequence: 5
  givenname: Guoquan
  surname: Huang
  fullname: Huang, Guoquan
  email: ghuang@udel.edu
  organization: University of Delaware,Robot Perception and Navigation Group (RPNG),Newark,DE,USA,19716
BookMark eNo1j81Kw0AUhUdRsK19A8E8QBPv_OROxoWgodVINWDVbZlMbmSknZQkm_r0Fqxnc-Dj8MEZs7PQBmLsmkPCOZib4q1cpYeIRICQCQepOEp9wsYcMVWGG8BTNhI8lTFkiBds2vffAMBBm8zgiN2Vu8Fv_Y8dfBviB9tTHX0Wr6vbKG9D7_uBgtvPohfbfflgN8fhLLKhjhbz50t23thNT9NjT9jHYv6eP8XL8rHI75exF6CG2GWpI7QoeQWajMkUopGVAadspQ9MpU2TkUPUxKVshCPSRmhKja0bTXLCrv68nojWu85vbbdf__-VvysTS0A
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS55552.2023.10341637
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665491906
9781665491907
EISSN 2153-0866
EndPage 1524
ExternalDocumentID 10341637
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i204t-c85ce6a631b07e99846693b90c4ab7b0745ff8ec667e133f2cee7927e59adf7e3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133658801024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-c85ce6a631b07e99846693b90c4ab7b0745ff8ec667e133f2cee7927e59adf7e3
PageCount 8
ParticipantIDs ieee_primary_10341637
PublicationCentury 2000
PublicationDate 2023-Oct.-1
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-1
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.2473032
Snippet In this work, we present a comprehensive analysis of the application of the First-estimates Jacobian (FEJ) design methodology in nonlinear optimization-based...
SourceID ieee
SourceType Publisher
StartPage 1517
SubjectTerms Design methodology
Estimation
Guidelines
Intelligent robots
Jacobian matrices
Navigation
Observability
Title Optimization-Based VINS: Consistency, Marginalization, and FEJ
URI https://ieeexplore.ieee.org/document/10341637
WOSCitedRecordID wos001133658801024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62eNCLW8WdHDw2dTqTyeLBg9KiIm1xo7eS5QV6cCrtVPDfm6RTqwcP5hRCAo8XHm_J-_IhdM5caJvKGRHSakKVz1kF44qE-F5w0MKICBR-4L2eGA7loAKrRywMAMTmM2iFaXzLtxMzD6Uyb-FZiB94DdU4Zwuw1qqgknApJKt6uNqJvLh77D_lfgS8VZq1lqd_8ahEN9Ld-qcA26ixAuThwber2UFrUOyizR9_Ce6hq743_rcKVUmuvXOy-NWn5pc4cnLOQmz82cSB2DYQYVUbm1gVFnc79w300u0839ySihyBjNOElsSI3ABTLGvrhINPmihjMtMyMVRp7tdo7pwAwxgHn4e61IvIZcohl8o6Dtk-qheTAg4Qzp30R4TOBHBqvYPyYZfyhuxSm9O2doeoEVQxel_8fzFaauHoj_VjtBEUvmh5O0H1cjqHU7RuPsrxbHoWb-0LakGWeg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS0MxEB60CurFreJuDh6b-pasHjwoLa3WtmiV3spbJtCDr9JF8N-bvL5aPXgwpxASGCYMs2S-fACXwri2KS6o0mlMWWRzViVkRF18ryTGKlE5ULgl223V7-tuAVbPsTCImDefYdVN87f8dJTMXKnMWnjo4ge5CmucscCbw7WWJRVPaqVF0cXle_qq-dR55nY4xFUQVhfnfzGp5I6kvv1PEXagvITkke63s9mFFcz2YOvHb4L7cNOx5v9W4CrprXVPKXm1yfk1yVk5Jy46_qwQR23rqLCKjRUSZSmp1-7L8FKv9e4atKBHoMPAY1OaKJ6giETox55EmzYxIXQYay9hUSztGuPGKEyEkGgzURNYEaUOJHIdpUZieAClbJThIRButD2i4lChZKl1UTbwiqwpmyDlzI_NEZSdKgbv8x8wBgstHP-xfgEbjd5ja9Bqth9OYNMpf94Adwql6XiGZ7CefEyHk_F5foNfcWeZwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Optimization-Based+VINS%3A+Consistency%2C+Marginalization%2C+and+FEJ&rft.au=Chen%2C+Chuchu&rft.au=Geneva%2C+Patrick&rft.au=Peng%2C+Yuxiang&rft.au=Lee%2C+Woosik&rft.date=2023-10-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=1517&rft.epage=1524&rft_id=info:doi/10.1109%2FIROS55552.2023.10341637&rft.externalDocID=10341637