Allocating defense resources for spatial cyber-physical power systems based on deep reinforcement learning
Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information systems, a defense resource allocation model for cyber-physical power systems (CPPS) is developed with the length of power lines as the defense c...
Uloženo v:
| Vydáno v: | IEEE International Conference on Industrial Cyber Physical Systems (Online) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
08.05.2023
|
| Témata: | |
| ISSN: | 2769-3899 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information systems, a defense resource allocation model for cyber-physical power systems (CPPS) is developed with the length of power lines as the defense cost. It is assumed that defense resources can reduce the probability of successful attacks. For this nonlinear programming (NLP) problem, an optimization-seeking method based on the deep Q -network (DQN) algorithm is proposed. The model and algorithm are evaluated based on the IEEE-39 bus system. The results show that for small action sets, the method is in general agreement with the results obtained by the optimization solver BONMIN. In addition, the allocation strategies with different scales of resources and action sets are analyzed. These studies can provide ideas for the application of deep reinforcement learning (DRL) in resource allocation for power systems. |
|---|---|
| AbstractList | Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information systems, a defense resource allocation model for cyber-physical power systems (CPPS) is developed with the length of power lines as the defense cost. It is assumed that defense resources can reduce the probability of successful attacks. For this nonlinear programming (NLP) problem, an optimization-seeking method based on the deep Q -network (DQN) algorithm is proposed. The model and algorithm are evaluated based on the IEEE-39 bus system. The results show that for small action sets, the method is in general agreement with the results obtained by the optimization solver BONMIN. In addition, the allocation strategies with different scales of resources and action sets are analyzed. These studies can provide ideas for the application of deep reinforcement learning (DRL) in resource allocation for power systems. |
| Author | Tang, Mian Tian, Meng Dong, Zhengcheng |
| Author_xml | – sequence: 1 givenname: Zhengcheng surname: Dong fullname: Dong, Zhengcheng email: dongzhengcheng@whu.edu.cn organization: School of Automation, Wuhan University of Technology,Wuhan,China – sequence: 2 givenname: Mian surname: Tang fullname: Tang, Mian organization: Ordnance NCO Academy, Army Engineering University of PLA,Wuhan,China – sequence: 3 givenname: Meng surname: Tian fullname: Tian, Meng email: mengtian@whu.edu.cn organization: Electronic Information School, Wuhan University,Wuhan,China |
| BookMark | eNo1kG1LwzAcxKMoOOe-gWC-QGf-SWqTl2P4MBgoqK9Hll60o0tLU5F-ewPqq-M47sdxl-wsdhGM3ZBYEgl7u1m_vJZGGVpKIdWSBEkjSJ-wha2sUaVQRLK0p2wmqztbKGPtBVukdBBCKElUCTNjh1Xbdt6NTfzgNQJiAh-Quq_BI_HQDTz1OXUt99MeQ9F_Tqnx2fbdN3I4pRHHxPcuoeZdzAz0GdDEXPU4Io68hRti5l-x8-DahMWfztn7w_3b-qnYPj9u1qtt0Uihx8JroysHGYKprdDkdJ33OhdKKkGGPDlXW-jSW-NBkEDlpQ6WqgDaGzVn17_cBsCuH5qjG6bd_z3qBzgeXpo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPS58381.2023.10128014 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350311259 |
| EISSN | 2769-3899 |
| EndPage | 6 |
| ExternalDocumentID | 10128014 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52177109 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2042021kf0011 funderid: 10.13039/501100012226 |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i204t-c4847ae2ff8d9041a4d003aaf515e181c1aad9e45c98ce1e2ee7c24f917fe1b83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001031560600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:57:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-c4847ae2ff8d9041a4d003aaf515e181c1aad9e45c98ce1e2ee7c24f917fe1b83 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10128014 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May-8 |
| PublicationDateYYYYMMDD | 2023-05-08 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May-8 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Industrial Cyber Physical Systems (Online) |
| PublicationTitleAbbrev | ICPS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211708 |
| Score | 1.8383071 |
| Snippet | Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | cyber-physical power systems Deep learning deep Q -network algorithm defense resource allocation length constraint Optimization Power systems Programming Reinforcement learning Resource management Training |
| Title | Allocating defense resources for spatial cyber-physical power systems based on deep reinforcement learning |
| URI | https://ieeexplore.ieee.org/document/10128014 |
| WOSCitedRecordID | wos001031560600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1s8eBJxYrf7MFr2ia7TXaPUix6KQUVeiv7MZFKSUPSCv57ZzZpxYMHb0sgSzJD8mZmZ95j7B69SnF0EjlQNpIjXCkEligGAVanFnKwQWwim07VfK5n7bB6mIUBgNB8Bn1ahrN8v3ZbKpUNiIuK2E46rJNlaTOstS-oiIREVFTbwxUP9eB5PHuhU0FKAxPR3939S0clwMjk-J8PcMJ6PwN5fLaHmlN2AMUZ-3hYERJR3zL3-LZFDbxqq_E1x2CU19QubVbcfVmoorJ1CS9JGY03HM41JxzzfF3gHlDiBoFK1YWqIW81Jd577G3y-Dp-ilrphGiZDOUmchJRx0CS58rroYyN9GghY3IMXwBB3cXGeA1y5LRyEEMCkLlE5pi85RBbJc5Zt1gXcMG49kY4THKcGKXSiUxnwsoU8MsFiz_H9JL1yFCLsmHHWOxsdPXH9Wt2RO4ITYPqhnU31RZu2aH73Czr6i749BsErKUK |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46BX1SceJv8-BrtzZJ2-RRhmPDOQZO2NtI0qtMpCvrJvjfe8m6iQ8--BYKDe0d7Xd3ufs-Qu7Rqy6OZoEFaQIR40oisAQRcDAqMZCD8WIT6XAoJxM1qofV_SwMAPjmM2i5pT_Lz-Z25UplbcdF5dhOdsleLAQL1-Na25IKZ05GRdZdXFGo2v3O6MWdC7pEkPHW5v5fSioeSLpH_3yEY9L8Gcmjoy3YnJAdKE7J-8OHwyLXuUwzfN-iArqo6_EVxXCUVq5hWn9Q-2VgEZS1U2jptNHomsW5og7JMjovcA8ocQNPpmp93ZDWqhJvTfLafRx3ekEtnhDMWCiWgRWIOxpYnstMhSLSIkMLaZ1jAAMI6zbSOlMgYqukhQgYQGqZyDF9yyEykp-RRjEv4JxQlWluMc2xPE6E5alKuREJ4LcLBn-PyQVpOkNNyzU_xnRjo8s_rt-Rg974eTAd9IdPV-TQuca3EMpr0lguVnBD9u3nclYtbr1_vwHFmqhR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Cyber+Physical+Systems+%28Online%29&rft.atitle=Allocating+defense+resources+for+spatial+cyber-physical+power+systems+based+on+deep+reinforcement+learning&rft.au=Dong%2C+Zhengcheng&rft.au=Tang%2C+Mian&rft.au=Tian%2C+Meng&rft.date=2023-05-08&rft.pub=IEEE&rft.eissn=2769-3899&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICPS58381.2023.10128014&rft.externalDocID=10128014 |