Allocating defense resources for spatial cyber-physical power systems based on deep reinforcement learning

Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information systems, a defense resource allocation model for cyber-physical power systems (CPPS) is developed with the length of power lines as the defense c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE International Conference on Industrial Cyber Physical Systems (Online) pp. 1 - 6
Main Authors: Dong, Zhengcheng, Tang, Mian, Tian, Meng
Format: Conference Proceeding
Language:English
Published: IEEE 08.05.2023
Subjects:
ISSN:2769-3899
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information systems, a defense resource allocation model for cyber-physical power systems (CPPS) is developed with the length of power lines as the defense cost. It is assumed that defense resources can reduce the probability of successful attacks. For this nonlinear programming (NLP) problem, an optimization-seeking method based on the deep Q -network (DQN) algorithm is proposed. The model and algorithm are evaluated based on the IEEE-39 bus system. The results show that for small action sets, the method is in general agreement with the results obtained by the optimization solver BONMIN. In addition, the allocation strategies with different scales of resources and action sets are analyzed. These studies can provide ideas for the application of deep reinforcement learning (DRL) in resource allocation for power systems.
AbstractList Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information systems, a defense resource allocation model for cyber-physical power systems (CPPS) is developed with the length of power lines as the defense cost. It is assumed that defense resources can reduce the probability of successful attacks. For this nonlinear programming (NLP) problem, an optimization-seeking method based on the deep Q -network (DQN) algorithm is proposed. The model and algorithm are evaluated based on the IEEE-39 bus system. The results show that for small action sets, the method is in general agreement with the results obtained by the optimization solver BONMIN. In addition, the allocation strategies with different scales of resources and action sets are analyzed. These studies can provide ideas for the application of deep reinforcement learning (DRL) in resource allocation for power systems.
Author Tang, Mian
Tian, Meng
Dong, Zhengcheng
Author_xml – sequence: 1
  givenname: Zhengcheng
  surname: Dong
  fullname: Dong, Zhengcheng
  email: dongzhengcheng@whu.edu.cn
  organization: School of Automation, Wuhan University of Technology,Wuhan,China
– sequence: 2
  givenname: Mian
  surname: Tang
  fullname: Tang, Mian
  organization: Ordnance NCO Academy, Army Engineering University of PLA,Wuhan,China
– sequence: 3
  givenname: Meng
  surname: Tian
  fullname: Tian, Meng
  email: mengtian@whu.edu.cn
  organization: Electronic Information School, Wuhan University,Wuhan,China
BookMark eNo1kG1LwzAcxKMoOOe-gWC-QGf-SWqTl2P4MBgoqK9Hll60o0tLU5F-ewPqq-M47sdxl-wsdhGM3ZBYEgl7u1m_vJZGGVpKIdWSBEkjSJ-wha2sUaVQRLK0p2wmqztbKGPtBVukdBBCKElUCTNjh1Xbdt6NTfzgNQJiAh-Quq_BI_HQDTz1OXUt99MeQ9F_Tqnx2fbdN3I4pRHHxPcuoeZdzAz0GdDEXPU4Io68hRti5l-x8-DahMWfztn7w_3b-qnYPj9u1qtt0Uihx8JroysHGYKprdDkdJ33OhdKKkGGPDlXW-jSW-NBkEDlpQ6WqgDaGzVn17_cBsCuH5qjG6bd_z3qBzgeXpo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPS58381.2023.10128014
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350311259
EISSN 2769-3899
EndPage 6
ExternalDocumentID 10128014
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52177109
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2042021kf0011
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-c4847ae2ff8d9041a4d003aaf515e181c1aad9e45c98ce1e2ee7c24f917fe1b83
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001031560600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:57:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-c4847ae2ff8d9041a4d003aaf515e181c1aad9e45c98ce1e2ee7c24f917fe1b83
PageCount 6
ParticipantIDs ieee_primary_10128014
PublicationCentury 2000
PublicationDate 2023-May-8
PublicationDateYYYYMMDD 2023-05-08
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-8
  day: 08
PublicationDecade 2020
PublicationTitle IEEE International Conference on Industrial Cyber Physical Systems (Online)
PublicationTitleAbbrev ICPS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211708
Score 1.8383071
Snippet Allocating defense resources to specific lines can enhance the resilience of power systems against external damages. Considering the impact of information...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms cyber-physical power systems
Deep learning
deep Q -network algorithm
defense resource allocation
length constraint
Optimization
Power systems
Programming
Reinforcement learning
Resource management
Training
Title Allocating defense resources for spatial cyber-physical power systems based on deep reinforcement learning
URI https://ieeexplore.ieee.org/document/10128014
WOSCitedRecordID wos001031560600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1s8eBJxYrf7MHrtsl2m909SrHopRRU6K1sdmelUtKQtIL_3tlNWvHgwVsSyBBmIG9mduY9Qu5zRGnEIcsSJwRDhMiZArw10o2SXDn8a7ooNiGnUzWf61m7rB53YQAgDp9BP1zGs3y3ttvQKhsELqrAdtIhHSmzZllr31AZ8iCiotoZrjTRg-fx7CWcCoYykA_7u7d_6ahEGJkc__MDTkjvZyGPzvZQc0oOoDgjHw-rgERhbpk68FiPAq3abnxNMRmldRiXNitqv3KoWNmGhJZBGY02HM41DTjm6LpAG1CigUilamPXkLaaEu898jZ5fB0_sVY6gS15IjbMCkQdA9x75XQiUiMcesgYj-kLIKjb1BinQYysVhZS4ADScuGxePOQ5mp4TrrFuoALQoWW3mfWCg5aZDBSaAyTPm1lBpkAfUl6wVGLsmHHWOx8dPXH82tyFMIRhwbVDeluqi3ckkP7uVnW1V2M6TesjqSc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20CnpSseK3e_CaNtlukt2jFEuLtRSs0FvZ7M5KRdKQtIL_3tltWvHgwVsSyBBmIG9mduY9Qu4zRGnEIR2EhvMAESILBOCtSk0cZsLgX9N4sYl0NBLTqRzXy-p-FwYA_PAZtNylP8s3C71yrbK246JybCe7ZC_mnIXrda1tS6XDnIyKqKe4olC2B93xizsXdIUg67Q27_9SUvFA0jv65ycck-bPSh4db8HmhOxAfkreHz4cFrnJZWrAYkUKtKz78RXFdJRWbmBafVD9lUEZFHVQaOG00eiaxbmiDskMXeRoAwo04MlUte8b0lpV4q1JXnuPk24_qMUTgjkL-TLQHHFHAbNWGBnySHGDHlLKYgIDCOs6UspI4LGWQkMEDCDVjFss3yxEmeickUa-yOGcUC5TaxOtOQPJE4gFGsO0T-o0gYSDvCBN56hZsebHmG18dPnH8zty0J88D2fDwejpihy60PgRQnFNGstyBTdkX38u51V56-P7DWgfp-M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Cyber+Physical+Systems+%28Online%29&rft.atitle=Allocating+defense+resources+for+spatial+cyber-physical+power+systems+based+on+deep+reinforcement+learning&rft.au=Dong%2C+Zhengcheng&rft.au=Tang%2C+Mian&rft.au=Tian%2C+Meng&rft.date=2023-05-08&rft.pub=IEEE&rft.eissn=2769-3899&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICPS58381.2023.10128014&rft.externalDocID=10128014